scholarly journals Cortical inputs to the middle temporal visual area in New World owl monkeys

Eye and Brain ◽  
2014 ◽  
pp. 1 ◽  
Author(s):  
Christina Cerkevich ◽  
Jon Kaas ◽  
Christine Collins
1984 ◽  
Vol 52 (3) ◽  
pp. 488-513 ◽  
Author(s):  
D. J. Felleman ◽  
J. H. Kaas

Response properties of single neurons in the middle temporal visual area (MT) of anesthetized owl monkeys were determined and quantified for flashed and moving bars of light under computer control for position, orientation, direction of movement, and speed. Receptive-field sizes, ranging from 4 to 25 degrees in width, were considerably larger than receptive fields with corresponding eccentricities in the striate cortex. Neurons were highly binocular with most cells equally or nearly equally activated by either eye. Neurons varied in selectivity for axis and direction of moving bars. Some neurons demonstrated little or no selectivity, others were bidirectional on a single axis, while the largest group was highly selective for direction with little or no response to bar movement opposite to the preferred direction. Over 70% of neurons were classified as highly selective and 90% showed some preference for direction and/or axis of stimulus movement. Neurons typically responded to bar movement only over a restricted range of velocities. The majority of neurons responded best to a particular velocity within the 5-60 degrees/s range, with marked attenuation of the response for velocities greater or less than the preferred. Some neurons failed to show significant response attenuation even at the lowest tested velocity, while other neurons preferred velocities of 100 degrees/s or more and failed to attenuate to the highest velocities. Response magnitude varied with stimulus dimensions. Increasing the length of the moving bar typically increased the magnitude of the response slightly until the stimulus exceeded the receptive-field borders. Other neurons responded less to increases in bar length within the excitatory receptive field. Neurons preferred narrow bars less than 1 degree in width, and marked reductions in responses characteristically occurred with wider stimuli. Moving patterns of randomly placed small dots were often as effective as or more effective than single bars in activating neurons. Selectivity for direction of movement remained for the dot pattern. for the dot pattern. Poststimulus time (PST) histograms of responses to bars flashed at a series of 21 different positions across the receptive field, in the "response-plane" format, indicated a spatially and temporally homogeneous receptive-field structure for nearly all neurons. Cells characteristically showed transient excitation at both stimulus onset and offset for all effective stimulus locations. Some cells responded mainly at bright stimulus onset or offset.


2004 ◽  
Vol 4 (8) ◽  
pp. 279-279
Author(s):  
I. Khaytin ◽  
X. Xu ◽  
C. E. Collins ◽  
P. M. Kaskan ◽  
D. W. Shima ◽  
...  

1995 ◽  
Vol 92 (24) ◽  
pp. 11303-11306 ◽  
Author(s):  
D. K. Xiao ◽  
S. Raiguel ◽  
V. Marcar ◽  
J. Koenderink ◽  
G. A. Orban

Perception ◽  
1985 ◽  
Vol 14 (2) ◽  
pp. 105-126 ◽  
Author(s):  
John Allman ◽  
Francis Miezin ◽  
EveLynn McGuinness

The true receptive field of more than 90% of neurons in the middle temporal visual area (MT) extends well beyond the classical receptive field (crf), as mapped with conventional bar or spot stimuli, and includes a surrounding region that is 50 to 100 times the area of the crf. These extensive surrounds are demonstrated by simultaneously stimulating the crf and the surround with moving stimuli. The surrounds commonly have directional and velocity-selective influences that are antagonistic to the response from the crf. The crfs of MT neurons are organized in a topographic representation of the visual field. Thus MT neurons are embedded in an orderly visuotopic array, but are capable of integrating local stimulus conditions within a global context. The extensive surrounds of MT neurons may be involved in figure–ground discrimination, preattentive vision, perceptual constancies, and depth perception through motion cues.


1981 ◽  
Vol 45 (3) ◽  
pp. 397-416 ◽  
Author(s):  
J. F. Baker ◽  
S. E. Petersen ◽  
W. T. Newsome ◽  
J. M. Allman

1. The response properties of 354 single neurons in the medial (M), dorsomedial (DM), dorsolateral (DL), and middle temporal (MT) visual areas were studied quantitatively with bar, spot, and random-dot stimuli in chronically implanted owl monkeys with fixed gaze. 2. A directionality index was computed to compare the responses to stimuli in the optimal direction with the responses to the opposing direction of movement. The greater the difference between opposing directions, the higher the index. MT cells had much higher direction indices to moving bars than cells in DL, DM, and M. 3. A tuning index was computed for each cell to compare the responses to bars moving in the optimal direction, or flashed in the optimal orientation, with the responses in other directions or orientations within +/- 90 degrees. Cells in all four areas were more sharply tuned to the orientation of stationary flashed bars than to moving bars, although a few cells (9/92( were unresponsive in the absence of movement. DM cells tended to be more sharply tuned to moving bars than cells in the other areas. 4. Directionality in DM, DL, and MT was relatively unaffected by the use of single-spot stimuli instead of bars; tuning in all four areas was broader to spots than bars. 5. Moving arrays of randomly spaced spots were more strongly excitatory than bar stimuli for many neurons in MT (16/31 cells). These random-dot stimuli were also effective in M, but evoked no response or weak responses from most cells in DM and DL. 6. The best velocities of movement were usually in the range of 10-100 degrees/s, although a few cells (22/227), primarily in MT (14/69 cells), preferred higher velocities. 7. Receptive fields of neurons in all four areas were much larger than striate receptive fields. Eccentricity was positively correlated with receptive-field size (r = 0.62), but was not correlated with directionality index, tuning index, or best velocity. 8. The results support the hypothesis that there are specializations of function among the cortical visual areas.


Sign in / Sign up

Export Citation Format

Share Document