scholarly journals PRELIMINARY TESTS OF LOCAL HYPERTHERMIA BASED ON INDUCTIVELY HEATED TUMOR BED IMPLANT

2017 ◽  
pp. 15-21
Author(s):  
Ilya Vasilchenko ◽  
Ilya Vasilchenko ◽  
Alexey Osintsev ◽  
Alexey Osintsev ◽  
Paul Stauffer ◽  
...  

Hyperthermia, i.e. tissue heating to a temperature of 39-45°C, is considered to be a very promising technique to increase the sensitivity of tumor cells to ionizing radiation and chemical preparations. At the present time, there are numerous methods for producing hyperthermia with the optimum method dependent on the required volume, depth, and site of heating. This paper presents the results of preliminary theoretical and in vivo confirmation studies of the feasibility of intraoperative local hyperthermia via induction heating of ferromagnetic material within a tumor bed implant that fills a resected tumor cavity. The implant is made during the surgical removal of tumor by mechanically filling the tumor bed with a self-polymerizing silicone paste in which very fine electroconductive ferromagnetic particles are uniformly distributed. Therefore, the implant can accommodate unique characteristics of each patient’s tumor bed. For the laboratory experiments, a prototype induction heating system was used to produce an alternating magnetic field with a frequency of about 100 kHz and a maximum intensity up to 3 kA/m inside an induction coil of inner diameter 35 cm. Experiments were conducted to heat a 2.5 cm diameter spherical implant both in open air and inside the thigh of a living rabbit. The results in both cases are in good agreement with our theoretical estimations. It was established that the temperature gradient near the implant surface decreases with increasing implant size, and for typical size tumor bed implants produces effective hyperthermia to a distance of more than 5 mm from the implant surface. This result provides hope for a decrease in relapse after treatment of malignant tumors using our combination heat plus intraoperative high dose rate local radiotherapy approach. Moreover, the externally coupled implant heating can be combined with local chemotherapy by applying a self-resorbable polymer film containing antineoplastic agents to the surface of the implant.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 181
Author(s):  
Loredana G. Marcu ◽  
Eva Bezak ◽  
Dylan D. Peukert ◽  
Puthenparampil Wilson

FLASH radiotherapy, or the administration of ultra-high dose rate radiotherapy, is a new radiation delivery method that aims to widen the therapeutic window in radiotherapy. Thus far, most in vitro and in vivo results show a real potential of FLASH to offer superior normal tissue sparing compared to conventionally delivered radiation. While there are several postulations behind the differential behaviour among normal and cancer cells under FLASH, the full spectra of radiobiological mechanisms are yet to be clarified. Currently the number of devices delivering FLASH dose rate is few and is mainly limited to experimental and modified linear accelerators. Nevertheless, FLASH research is increasing with new developments in all the main areas: radiobiology, technology and clinical research. This paper presents the current status of FLASH radiotherapy with the aforementioned aspects in mind, but also to highlight the existing challenges and future prospects to overcome them.



Brachytherapy ◽  
2011 ◽  
Vol 10 (6) ◽  
pp. 498-502 ◽  
Author(s):  
Ashraf H. Hassouna ◽  
Yasir A. Bahadur ◽  
Camelia Constantinescu ◽  
Mohamed E. El Sayed ◽  
Hussain Naseem ◽  
...  


Author(s):  
Erik B. Jørgensen ◽  
Simon Buus ◽  
Lise Bentzen ◽  
Steffen B. Hokland ◽  
Susanne Rylander ◽  
...  


2021 ◽  
Vol 161 ◽  
pp. S1353-S1354
Author(s):  
M. Gutiérrez Ruiz ◽  
R. Astudillo Olalla ◽  
A.L. Rivero ◽  
P. érez ◽  
J.T. Anchuelo Latorre ◽  
...  


Author(s):  
Seenisamy Ramapandian ◽  
Vivekanandan Nagarajan ◽  
Ashutosh Mukherji ◽  
Parthasarathy Vedasoundaram ◽  
K. S. Reddy ◽  
...  


Author(s):  
N Singh ◽  
Sh Ahamed ◽  
A Sinha ◽  
Sh Srivastava ◽  
N K Painuly ◽  
...  

Background: Intracavitary brachytherapy plays a major role in management of cervical carcinoma. Assessment of dose received by OAR’s therefore becomes crucial for the estimation of radiation toxicities in high dose rate brachytherapy.Objective: The purpose of this study is to evaluate the role of in vivo dosimetry in HDR brachytherapy and to compare the actual doses delivered to OAR’s with those calculated during treatment planning.Materials and Methods: A total of 50 patients were treated with Microselectron HDR. Out of 50 patients, 26 were treated with a dose of 7 Gy and 24 with a dose of 9 Gy, prescribed to point A. Brachytherapy planning and evaluation of dose to the bladder and rectum was done on TPS & in vivo dosimetry was performed using portable MOSFET.Results: The calibration factors calculated for both the dosimeters are almost equal and are 0.984 cGy/mV and 1.0895 cGy/mV. For bladder, dose deviation was found to be within +/- 5% in 28 patients, +/- 5-10% in 14 patients, +/- 10-15% in 4 patients. The deviation between the TPS-calculated dose and the dose measured by MOSFET for rectum was within +/- 5% in 31 patients, +/- 5–10% in 8 patients, and +/- 10–15% in 7 patients.Conclusion: TPS calculated doses were slightly higher than that measured by MOSFET. The use of a small size of MOSFET dosimeter is an efficient method for accurately measuring doses in high-dose gradient fields typically seen in brachytherapy. Therefore, to reduce risk of large errors in the dose delivery, in vivo dosimetry can be done in addition to TPS computations.





2020 ◽  
Vol 47 (5) ◽  
pp. 2242-2253 ◽  
Author(s):  
Samuel Ruiz‐Arrebola ◽  
Rosa Fabregat‐Borrás ◽  
Eduardo Rodríguez ◽  
Manuel Fernández‐Montes ◽  
Mercedes Pérez‐Macho ◽  
...  


Brachytherapy ◽  
2015 ◽  
Vol 14 (4) ◽  
pp. 565-570 ◽  
Author(s):  
Rafael Martínez-Monge ◽  
Germán Valtueña ◽  
Marta Santisteban ◽  
Mauricio Cambeiro ◽  
Leyre Arbea ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document