scholarly journals Improving Vehicle Ride Response using a Shock Absorber with Dual Damping Characteristics

2011 ◽  
Vol 14 (AEROSPACE SCIENCES) ◽  
pp. 1-15
Author(s):  
M. Ajaj ◽  
A. Sharaf ◽  
S. Hegazy ◽  
Y. Hossamel-deen
2021 ◽  
Author(s):  
Satyaranjan Sahoo ◽  
Eric Pranesh De Reuben ◽  
Deepak BAKSHI ◽  
Hari Krishnan ◽  
Amardeep Singh

2013 ◽  
Vol 694-697 ◽  
pp. 36-40 ◽  
Author(s):  
Da Feng Song ◽  
Gong Ke Yang ◽  
Chun Xiao Du

On the basis of the structure characteristics of the seperated manually adjustable damper and its working principles, establish the shock absorber mathematical model, at the same time, get test data and curves of seperated manually adjustable shock absorber damping characteristics by bench test. Use MATLAB to simulate the characteristic curve of the speed of the shock absorber based on the mathematical model. The simulation curves and experimental curves were compared to verify the correctness and accuracy of the model. Further simulation and analysis affect of parts of structural changes on the damping characteristics. In order to provide a theoretical basis to structural parameters designing and vehicle damping matching.


2020 ◽  
Author(s):  
Muhammad Yousaf Iqbal ◽  
Zhifei Wu ◽  
Khalid Mahmood

Abstract This article intends a hybrid energy harvesting shock absorber design which comprehends energy harvesting of automobile suspension vibration dissipation. A mathematical model of the energy harvesting prototype is established, and simulation results show that the dissipation energy can be recovered by varying the feed module, thereby got the damping forces ratio at different compression and extension stroke. The energy conversion from hydraulic energy to mechanical energy mainly then mechanical energy converted into electrical energy furthermore we can rechange our battery from this recovered energy. The advanced mathematical model and prototype proposed maximum ride comfort meanwhile recovered the suspension energy and fuel saving. This article shows the simulation results verifying it with prototype test results. The damping force of expansion stroke is higher than the damping force of compression stroke. The damping characteristics curves and speed characteristics curves verify the validity by simulation and prototyping damper at different amplitudes of off-road vehicles. The Hydraulic Electromagnetic Regenerative Shock Absorber (HESA) prototype characteristic is tested in which 65 watts recovered energy at 1.67 Hz excitation frequency. So, 14.65% maximum energy recovery efficiency got at 20 mm rod diameter and 8 cc/rev motor displacement. The damping characteristics of the HESA prototype examined and it has ideal performance as the standard requirements of the National Standard QC/T 491–1999.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhifei Wu ◽  
Guangzhao Xu ◽  
Hongwei Yang ◽  
Mingjie Li

In the present study, a hydraulic shock absorber is proposed. Since the damper is mainly used in suspension energy recovery system, the damping characteristics of the damper under no-load state are studied in this paper. Structural design is conducted so that the unidirectional flow of the oil drives the hydraulic motor to generate electricity. Meanwhile, an asymmetrical extension/compression damping force is obtained. A mathematical model of the shock absorber is established, and the main characteristics of the inherent damping force are obtained. Based on the established model, effects of the accumulator volume, accumulator preinflation pressure, hydraulic motor displacement, check valve inner diameter, and spring stiffness, hydraulic line length and inner diameter on the indicator characteristics are analyzed. Moreover, a series of experiments are conducted on the designed damper to evaluate the characteristics of the inherent damping force and analyze the effect of the accumulator volume and preinflation pressure on the damping characteristics.


2019 ◽  
Vol 2019 (0) ◽  
pp. OS10-03
Author(s):  
Hidetaka SHIOZAKI ◽  
Toshihiko ASAMI ◽  
Itsuro HONDA

2018 ◽  
Vol 9 (1) ◽  
pp. 27-37 ◽  
Author(s):  
Hongtuo Liu ◽  
Fangwei Xie ◽  
Kai Zhang ◽  
Xinxing Zhang ◽  
Jin Zhang ◽  
...  

Purpose The shock absorber is an important component of vehicle suspension that attenuates the vehicle vibration. Its running state directly affects the performance of the vehicle suspension. The purpose of this paper is to quantitatively study the relationship between damping characteristics and air chamber and oil properties in single-tube pneumatic shock absorber. Design/methodology/approach Combined with the principle of fluid dynamics and hydraulic transmission technology, the rebound stroke and compression stroke mathematical models, and damping characteristics simulation model are established to investigate the effect of the air chamber and oil property on damping characteristics. Findings Research results show that the initial pressure of the air chamber is the key parameter which influences the damping characteristics of the shock absorber. The change of the initial pressure has more impact on damping force, and less impact on the speed characteristic; the initial volume of the air chamber almost has no effect on the damping characteristics. The density and viscosity of the oil have certain influence on the damping characteristics. Therefore, selecting suitable damping oil is very important. Originality/value Using Matlab/Simulink software to build simulation models, its results are very accurate. The conclusions can provide a theoretical reference for the structure design of a single-tube pneumatic shock absorber.


Sign in / Sign up

Export Citation Format

Share Document