scholarly journals On the existence of stationary Nash equilibria in average stochastic games with finite state and action spaces

2020 ◽  
Vol 13 ◽  
pp. 304-323
Author(s):  
Dmitrii Lozovanu ◽  
◽  
Stefan Pickl ◽  

We consider infinite n-person stochastic games with limiting average payoffs criteria for the players. The main results of the paper are concerned with the existence of stationary Nash equilibria and determining the optimal strategies of the players in the games with finite state and action spaces. We present conditions for the existence of stationary Nash equilibria in the considered games and propose an approach for determining the optimal stationary strategies of the players if such strategies exist.

2021 ◽  
Vol 14 ◽  
pp. 290-301
Author(s):  
Dmitrii Lozovanu ◽  
◽  
Stefan Pickl ◽  

In this paper we consider the problem of the existence and determining stationary Nash equilibria for switching controller stochastic games with discounted and average payoffs. The set of states and the set of actions in the considered games are assumed to be finite. For a switching controller stochastic game with discounted payoffs we show that all stationary equilibria can be found by using an auxiliary continuous noncooperative static game in normal form in which the payoffs are quasi-monotonic (quasi-convex and quasi-concave) with respect to the corresponding strategies of the players. Based on this we propose an approach for determining the optimal stationary strategies of the players. In the case of average payoffs for a switching controller stochastic game we also formulate an auxiliary noncooperative static game in normal form with quasi-monotonic payoffs and show that such a game possesses a Nash equilibrium if the corresponding switching controller stochastic game has a stationary Nash equilibrium.


1999 ◽  
Vol 01 (01) ◽  
pp. 9-31 ◽  
Author(s):  
J. FLESCH ◽  
F. THUIJSMAN ◽  
O. J. VRIEZE

We examine the use of stationary and Markov strategies in zero-sum stochastic games with finite state and action spaces. It is natural to evaluate a strategy for the maximising player, player 1, by the highest reward guaranteed to him against any strategy of the opponent. The highest rewards guaranteed by stationary strategies or by Markov strategies are called the stationary utility or the Markov utility, respectively. Since all stationary strategies are Markov strategies, the Markov utility is always larger or equal to the stationary utility. However, in all presently known subclasses of stochastic games, these utilities turn out to be equal. In this paper, we provide a colourful example in which the Markov utility is strictly larger than the stationary utility and we present several conditions under which the utilities are equal. We also show that each stochastic game has at least one initial state for which the two utilities are equal. Several examples clarify these issues.


1976 ◽  
Vol 60 (1) ◽  
pp. 245 ◽  
Author(s):  
C. J. Himmelberg ◽  
T. Parthasarathy ◽  
T. E. S. Raghavan ◽  
F. S. Van Vleck

1988 ◽  
Vol 39 (6) ◽  
pp. 612
Author(s):  
L. C. Thomas ◽  
O. J. Vrieze

2017 ◽  
Vol 49 (3) ◽  
pp. 826-849 ◽  
Author(s):  
Prasenjit Mondal

Abstract Zero-sum two-person finite undiscounted (limiting ratio average) semi-Markov games (SMGs) are considered with a general multichain structure. We derive the strategy evaluation equations for stationary strategies of the players. A relation between the payoff in the multichain SMG and that in the associated stochastic game (SG) obtained by a data-transformation is established. We prove that the multichain optimality equations (OEs) for an SMG have a solution if and only if the associated SG has optimal stationary strategies. Though the solution of the OEs may not be optimal for an SMG, we establish the significance of studying the OEs for a multichain SMG. We provide a nice example of SMGs in which one player has no optimal strategy in the stationary class but has an optimal semistationary strategy (that depends only on the initial and current state of the game). For an SMG with absorbing states, we prove that solutions in the game where all players are restricted to semistationary strategies are solutions for the unrestricted game. Finally, we prove the existence of stationary optimal strategies for unichain SMGs and conclude that the unichain condition is equivalent to require that the game satisfies some recurrence/ergodicity/weakly communicating conditions.


2018 ◽  
Vol 55 (3) ◽  
pp. 728-741 ◽  
Author(s):  
János Flesch ◽  
Arkadi Predtetchinski ◽  
William Sudderth

Abstract We consider positive zero-sum stochastic games with countable state and action spaces. For each player, we provide a characterization of those strategies that are optimal in every subgame. These characterizations are used to prove two simplification results. We show that if player 2 has an optimal strategy then he/she also has a stationary optimal strategy, and prove the same for player 1 under the assumption that the state space and player 2's action space are finite.


1976 ◽  
Vol 60 (1) ◽  
pp. 245-245
Author(s):  
C. J. Himmelberg ◽  
T. Parthasarathy ◽  
T. E. S. Raghavan ◽  
F. S. Van Vleck

Sign in / Sign up

Export Citation Format

Share Document