scholarly journals A novel nested stochastic dynamic programming (nSDP) and nested reinforcement learning (nRL) algorithm for multipurpose reservoir optimization

2016 ◽  
Vol 19 (1) ◽  
pp. 47-61 ◽  
Author(s):  
Blagoj Delipetrev ◽  
Andreja Jonoski ◽  
Dimitri P. Solomatine

In this article we present two novel multipurpose reservoir optimization algorithms named nested stochastic dynamic programming (nSDP) and nested reinforcement learning (nRL). Both algorithms are built as a combination of two algorithms; in the nSDP case it is (1) stochastic dynamic programming (SDP) and (2) nested optimal allocation algorithm (nOAA) and in the nRL case it is (1) reinforcement learning (RL) and (2) nOAA. The nOAA is implemented with linear and non-linear optimization. The main novel idea is to include a nOAA at each SDP and RL state transition, that decreases starting problem dimension and alleviates curse of dimensionality. Both nSDP and nRL can solve multi-objective optimization problems without significant computational expenses and algorithm complexity and can handle dense and irregular variable discretization. The two algorithms were coded in Java as a prototype application and on the Knezevo reservoir, located in the Republic of Macedonia. The nSDP and nRL optimal reservoir policies were compared with nested dynamic programming policies, and overall conclusion is that nRL is more powerful, but significantly more complex than nSDP.

2015 ◽  
Vol 17 (4) ◽  
pp. 570-583 ◽  
Author(s):  
Blagoj Delipetrev ◽  
Andreja Jonoski ◽  
Dimitri P. Solomatine

In this article we present a novel nested dynamic programming (nDP) algorithm for multipurpose reservoir optimization with additional decision variables related to different water users. The nDP algorithm is built from two algorithms: (1) dynamic programming (DP) and (2) nested optimization algorithm implemented with Simplex and quadratic Knapsack methods. The novel idea is to include a nested optimization algorithm into the DP transition that reduces the initial problem dimension and alleviates the DP's curse of dimensionality. The nDP can solve multi-objective optimization problems, without significantly increasing the algorithm complexity and the computational expenses. Computationally, the nDP can handle dense and irregular variable discretization; it is coded in Java as a prototype application and has been successfully tested with eight objectives at the Knezevo reservoir in the Republic of Macedonia. The article presents a discussion on comparison of nDP with other DP methods and highlights the advantages of nDP.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 625
Author(s):  
Xinyu Wu ◽  
Rui Guo ◽  
Xilong Cheng ◽  
Chuntian Cheng

Simulation-optimization methods are often used to derive operation rules for large-scale hydropower reservoir systems. The solution of the simulation-optimization models is complex and time-consuming, for many interconnected variables need to be optimized, and the objective functions need to be computed through simulation in many periods. Since global solutions are seldom obtained, the initial solutions are important to the solution quality. In this paper, a two-stage method is proposed to derive operation rules for large-scale hydropower systems. In the first stage, the optimal operation model is simplified and solved using sampling stochastic dynamic programming (SSDP). In the second stage, the optimal operation model is solved by using a genetic algorithm, taking the SSDP solution as an individual in the initial population. The proposed method is applied to a hydropower system in Southwest China, composed of cascaded reservoir systems of Hongshui River, Lancang River, and Wu River. The numerical result shows that the two-stage method can significantly improve the solution in an acceptable solution time.


Ecography ◽  
2014 ◽  
Vol 37 (9) ◽  
pp. 916-920 ◽  
Author(s):  
Iadine Chadès ◽  
Guillaume Chapron ◽  
Marie-Josée Cros ◽  
Frédérick Garcia ◽  
Régis Sabbadin

Sign in / Sign up

Export Citation Format

Share Document