Study of the effect of DMSO on VOS odour production in a wastewater plant

2007 ◽  
Vol 55 (5) ◽  
pp. 327-333 ◽  
Author(s):  
X. Cheng ◽  
E.D. Peterkin ◽  
G.A. Burlingame

Odours caused by volatile organic sulphides (VOS) have a history spanning over 20 years for Philadelphia's Northeast Water Pollution Control Plant (NEWPCP). A “canned corn” type of odour has caused residential complaints. Traditional odour control approaches based on hydrogen sulphide failed. This study confirmed that dimethyl sulphoxide (DMSO) from a chemical facility was the dominant cause of the “canned corn” nuisance odour in the form of dimethyl sulphide (DMS). During a discharge, DMSO concentrations up to 12 mg/L were found in the influent of the NEWPCP. Each DMSO concentration peak induced a DMS peak. DMS concentrations increased from less than 50 μg/L to 6 mg/L with a corresponding decrease in DMSO. Approximately 79% of DMSO from the primary sedimentation influent was passed to the effluent, and to downstream processes, such as the aeration tanks where the DMS was volatilised by the aeration. The DMS partial pressure in ambient air of NEWPCP can be between 0.03 and 0.18 × 10−3 atm during a DMSO discharge. From the above information, the potential of VOS production is estimated and a practical plan for remediation can be designed.

of storage as short as possible, only; 24 h should not be ex­ ceeded. Table III comprises the most important criteria for valid static and dynamic sampling. It seems that both the guide of Warren Springs, U.K. and the VDI-Guideline might be a useful base to describe commonly accepted sampling procedures aiming at a standardization of sampling which might be a first step for a harmonization of olfactometric measurements in the different laboratories and countri es. REFERENCES (1) BULLEY, N.R. and D. PHILLIPS (1980). Sensory evaluation of agricul­ tural odours: A critical review. Can. Agric. Eng. 22, 107 - 112. (2) HENRY, J.G. and R. GEHR (1980). Odour control: An operator's guide. Journal WPCF 52, 2523 - 2537. (3) ROOS, C., J.A. DON and J. SCHAEFER (1984). Characterization of odour-polluted air. In: Proc.Int.Symp., Soc. Beige de Filtr. (eds.), 25-27 April 1984, Louvain-La-Neuve, Belgium, pp. 3 - 22. (4) BAKER, A.R. and R.C. DOERR (1959). Methods of sampling and storage of air containing vapors and gases. Int.J.Air Poll. 2, 142 - 158. (5) SCHUETTE, F.J. (1967). Plastic bags for collection of gas samples. Atmosph.Environm. 1, 515 - 519. (6) SCHODDER, F. (1977T. Messen von Geruchsstoffkonzentrationen, Erfassen von Geruch. Grundl. Landtechnik 27, 73 - 82. (7) CORMACK, D., T.A. DORLING and B.W7J. LYNCH (1974). Comparison of tech­ niques for organoleptic odour-intensity assessment. Chem.Ind. (Lon­ don) no. 2, 857 - 861. (8) SCHUETZLE, D., T.J. PRATER and S. RUDDELL (1975). Sampling and anal­ ysis of emissions from stationary sources. I. Odour and total hydro­ carbons. APCA Journal 25, 925 - 932. (9) WAUTERS, E., E. WALRAVENS, E. MUYLLE and G. VERDUYN (1983). An evalu­ ation of a fast sampling procedure for the trace analysis of volatile organic compounds in ambient air. Environm.Monitor.Assessm. 3, 151-160. (10) LACHENMAYER, U. and H. KOHLER (1984). Untersuchungen zur Neuentwick-lung eines Olfaktometers. Staub - Reinhalt. Luft 44, 359 - 362. (11) BERNARD, F. (1984). Simplified methods of odour measurement: Indus­ trial application and interest for administrative control. Proc. Int. Symp., Soc. Beige de Filtr. (eds.), 25 - 27 April 1984, Louvain-La-Neuve, Belgium, pp. 139 - 150. (12) GILLARD, F. (1984). Measurement of odours by dynamic olfactometry. Application to the steel and carbonization industries. Proc.Int.Symp., Soc. Beige de Filtr. (eds.), 25 - 27 April 1984, Louvain-La-Neuve, Belgium, pp. 53 - 86. (13) MANNEBECK, H. (1975). Tragbare Olfaktometer. VDI-Bericht 226, 103-105. (14) BEDBOROUGH, D.R. (1980). Sensory measurement of odours. In: Odour Control - a concise guide, F.H.H. Valentin and A.A. North (eds.), Warren Springs Laboratories, Stevenage, Hertfordshire, U.K., pp. 17-30. (15) THIELE, V. (1984). Olfaktometrie an einer Emissionsquelle - Ergebnis-se des VDI-Ringvergleichs. Staub - Reinhalt. Luft 44, 342 - 351. (16) DUFFEE, R.A., J.P. WAHL, W. MARRONE and J.S. NADERT1973). Defining and measuring objectionable odors. Internat. Pollution Eng. Congress, Philadelphia, paper no 25a, pp. 192 - 201.


2015 ◽  
Vol 2015 (15) ◽  
pp. 3796-3806
Author(s):  
Robert Morton ◽  
James Ecker ◽  
Robert Hickey ◽  
Daniel Gary ◽  
Andy Lee ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1592
Author(s):  
Olga P. Ibragimova ◽  
Anara Omarova ◽  
Bauyrzhan Bukenov ◽  
Aray Zhakupbekova ◽  
Nassiba Baimatova

Air pollution is one of the primary sources of risk to human health in the world. In this study, seasonal and spatial variations of multiple volatile organic compounds (VOCs) were measured at six sampling sites in Almaty, Kazakhstan. The seasonal and spatial variations of 19 VOCs were evaluated in 2020, including the periods before and after COVID-19 lockdown. The concentrations of 9 out of 19 VOCs had been changed significantly (p < 0.01) during 2020. The maximum concentrations of total VOCs (TVOCs) were observed on 15, 17, and 19 January and ranged from 233 to 420 µg m−3. The spatial distribution of TVOCs concentrations in the air during sampling seasons correlated with the elevation and increased from southern to northern part of Almaty, where Combined Heat and Power Plants are located. The sources of air pollution by VOCs were studied by correlations analysis and BTEX ratios. The ranges of toluene to benzene ratio and benzene, toluene, and ethylbenzene demonstrated two primary sources of BTEX in 2020: traffic emissions and biomass/biofuel/coal burning. Most of m-, p-xylenes to ethylbenzene ratios in this study were lower than 3 in all sampling periods, evidencing the presence of aged air masses at studied sampling sites from remote sources.


Sign in / Sign up

Export Citation Format

Share Document