scholarly journals Effect of Posture Change on Control of Ventilation.

1998 ◽  
Vol 48 (4) ◽  
pp. 267-273 ◽  
Author(s):  
H. YOSHIZAKI ◽  
A. YOSHIDA ◽  
F. HAYASHI ◽  
Y. FUKUDA
Author(s):  
Joseph Feher

Author(s):  
Giryon Kim ◽  
Ah-young Jeon ◽  
Jae-hee Jung ◽  
In-cheol Kim ◽  
Jae-hyung Kim ◽  
...  

2002 ◽  
Vol 282 (2) ◽  
pp. R611-R622 ◽  
Author(s):  
Mette S. Olufsen ◽  
Ali Nadim ◽  
Lewis A. Lipsitz

The dynamic cerebral blood flow response to sudden hypotension during posture change is poorly understood. To better understand the cardiovascular response to hypotension, we used a windkessel model with two resistors and a capacitor to reproduce beat-to-beat changes in middle cerebral artery blood flow velocity (transcranial Doppler measurements) in response to arterial pressure changes measured in the finger (Finapres). The resistors represent lumped systemic and peripheral resistances in the cerebral vasculature, whereas the capacitor represents a lumped systemic compliance. Ten healthy young subjects were studied during posture change from sitting to standing. Dynamic variations of the peripheral and systemic resistances were extracted from the data on a beat-to-beat basis. The model shows an initial increase, followed approximately 10 s later by a decline in cerebrovascular resistance. The model also suggests that the initial increase in cerebrovascular resistance can explain the widening of the cerebral blood flow pulse observed in young subjects. This biphasic change in cerebrovascular resistance is consistent with an initial vasoconstriction, followed by cerebral autoregulatory vasodilation.


2013 ◽  
pp. 82-86
Author(s):  
Brian J. Whipp† ◽  
Susan A. Ward

Author(s):  
Peter Kam ◽  
Ian Power ◽  
Michael J. Cousins ◽  
Philip J. Siddal

1987 ◽  
Vol 63 (3) ◽  
pp. 1019-1024 ◽  
Author(s):  
R. L. Bjurstrom ◽  
R. B. Schoene

Synchronized swimmers perform strenuous underwater exercise during prolonged breath holds. To investigate the role of the control of ventilation and lung volumes in these athletes, we studied the 10 members of the National Synchronized Swim Team including an olympic gold medalist and 10 age-matched controls. We evaluated static pulmonary function, hypoxic and hypercapnic ventilatory drives, and normoxic and hyperoxic breath holding. Synchronized swimmers had an increased total lung capacity and vital capacity compared with controls (P less than 0.005). The hypoxic ventilatory response (expressed as the hyperbolic shape parameter A) was lower in the synchronized swimmers than controls with a mean value of 29.2 +/- 2.6 (SE) and 65.6 +/- 7.1, respectively (P less than 0.001). The hypercapnic ventilatory response [expressed as S, minute ventilation (1/min)/alveolar CO2 partial pressure (Torr)] was no different between synchronized swimmers and controls. Breath-hold duration during normoxia was greater in the synchronized swimmers, with a mean value of 108.6 +/- 4.8 (SE) vs. 68.03 +/- 8.1 s in the controls (P less than 0.001). No difference was seen in hyperoxic breath-hold times between groups. During breath holding synchronized swimmers demonstrated marked apneic bradycardia expressed as either absolute or heart rate change from basal heart rate as opposed to the controls, in whom heart rate increased during breath holds. Therefore the results show that elite synchronized swimmers have increased lung volumes, blunted hypoxic ventilatory responses, and a marked apneic bradycardia that may provide physiological characteristics that offer a competitive advantage for championship performance.(ABSTRACT TRUNCATED AT 250 WORDS)


Author(s):  
Tomokazu IMAE ◽  
Matsuki YAMAMOTO ◽  
Daisaku TOCHIGI ◽  
Takeo IIDA

Sign in / Sign up

Export Citation Format

Share Document