scholarly journals Acceleration of Ca2+ Repletion in the Junctional Sarcoplasmic Reticulum and Alternation of the Ca2+-Induced Ca2+-Release Mechanism in Hypertensive Rat (SHR) Cardiac Muscle

2008 ◽  
Vol 58 (2) ◽  
pp. 113-121
Author(s):  
Midori Tanaka ◽  
Tsukasa Tameyasu
Author(s):  
James Junker ◽  
Joachim R. Sommer

Junctional sarcoplasmic reticulum (JSR) in all its forms (extended JSR, JSR of couplings, corbular SR) in both skeletal and cardiac muscle is always located at the Z - I regions of the sarcomeres. The Z tubule is a tubule of the free SR (non-specialized SR) which is consistently located at the Z lines in cardiac muscle (1). Short connections between JSR and Z lines have been described (2), and bundles of filaments at Z lines have been seen in skeletal (3) and cardiac (4) muscle. In opossum cardiac muscle, we have seen bundles of 10 nm filaments stretching across interfibrillary spaces and adjacent myofibrils with extensions to the plasma- lemma in longitudinal (Fig. 1) and transverse (Fig. 2) sections. Only an occasional single filament is seen elsewhere along a sarcomere. We propose that these filaments represent anchor fibers that maintain the observed invariant topography of the free SR and JSR throughout the contraction-relaxation cycle.


1991 ◽  
Vol 260 (3) ◽  
pp. H989-H997 ◽  
Author(s):  
C. S. Moravec ◽  
M. Bond

We have used electron-probe microanalysis (EPMA) to address the question of Ca2+ release by junctional sarcoplasmic reticulum (JSR) as well as Ca2+ regulation by mitochondria (MT) during cardiac muscle contraction. Hamster papillary muscles were rapidly frozen during relaxation or at the peak rate of tension rise (+dT/dt). Total Ca2+ content was measured by EPMA in the JSR, within a MT, over the A band, and in the whole cell, in nine cells per animal (five animals per group). JSR Ca2+ content was found to be significantly lower in muscles frozen at the peak of contraction [7.3 +/- 1.3 (mean +/- SE) mmol Ca2+/kg dry wt] than in those frozen during relaxation (12.5 +/- 1.9 mmol Ca2+/kg dry wt; P less than 0.01), suggesting that Ca2+ is released from this storage site during cardiac muscle contraction. In contrast, MT Ca2+ content did not change significantly during contraction (0.4 +/- 0.1 mmol/kg dry wt) compared with relaxation (0.1 +/- 0.2 mmol/kg dry wt). A third group of muscles was frozen during relaxation after pretreatment with 10(-7) M ryanodine. Ca2+ content of the JSR was significantly decreased (P less than 0.01) in this group of muscles, (6.4 +/- 1.8 mmol/kg dry wt) compared with those frozen during relaxation in the absence of the drug. This suggests that the intracellular storage site with a decreased Ca2+ content in muscles frozen at the peak of contraction is the ryanodine-releasable store. These results provide the first direct measurement of the Ca2+ content of both JSR and MT during a normal cardiac muscle contraction and demonstrate that Ca2+ is released from the JSR during muscle contraction.


1982 ◽  
Vol 93 (3) ◽  
pp. 883-892 ◽  
Author(s):  
A O Jorgensen ◽  
A C Shen ◽  
P Daly ◽  
D H MacLennan

Localization of the Ca2+ + Mg2+-ATPase of the sarcoplasmic reticulum in rat papillary muscle was determined by indirect immunofluorescence and immunoferritin labeling of cryostat and ultracryotomy sections, respectively. The Ca2+ + Mg2+-ATPase was found to be rather uniformly distributed in the free sarcoplasmic reticulum membrane but to be absent from both peripheral and interior junctional sarcoplasmic reticulum membrane, transverse tubules, sarcolemma, and mitochondria. This suggests that the Ca2+ + Mg2+-ATPase of the sarcoplasmic reticulum is antigenically unrelated to the Ca2+ + Mg2+-ATPase of the sarcolemma. These results are in agreement with the idea that the sites of interior and peripheral coupling between sarcoplasmic reticulum membrane and transverse tubules and between sarcoplasmic reticulum and sarcolemmal membranes play the same functional role in the excitation-contraction coupling in cardiac muscle.


1987 ◽  
Vol 104 (5) ◽  
pp. 1343-1352 ◽  
Author(s):  
A O Jorgensen ◽  
L R Jones

The subcellular distribution of phospholamban in adult canine ventricular myocardial cells was determined by the indirect immunogold-labeling technique. The results presented suggest that phospholamban, like the Ca2+-ATPase, is uniformly distributed in the network sarcoplasmic reticulum but absent from the junctional portion of the junctional sarcoplasmic reticulum. Unlike the Ca2+-ATPase, but like cardiac calsequestrin, phospholamban also appears to be present in the corbular sarcoplasmic reticulum. Comparison of the relative distribution of phospholamban immunolabeling in the sarcoplasmic reticulum with that of the sarcolemma showed that the density of phospholamban in the network sarcoplasmic reticulum was approximately 35-fold higher than that of the cytoplasmic side of the sarcolemma, which in turn was found to be three- to fourfold higher than the density of the background labeling. However, a majority of the specific phospholamban labeling within 30 nm of the cytoplasmic side of the sarcolemma was clustered and present over the sarcoplasmic reticulum in the subsarcolemmal region of the myocardial cells, suggesting that phospholamban is confined to the junctional regions between the sarcolemma and the sarcoplasmic reticulum, but absent from the nonjunctional portion of the sarcolemma. Although the resolution of the immunogold-labeling technique used (60 nm) does not permit one to determine whether the specific labeling within 30 nm of the cytoplasmic side of the sarcolemma is associated with the sarcolemma and/or the junctional sarcoplasmic reticulum, it is likely that the low amount of labeling in this region represents phospholamban associated with sarcoplasmic reticulum. These results suggest that phospholamban is absent from the sarcolemma and confined to the sarcoplasmic reticulum in cardiac muscle.


Sign in / Sign up

Export Citation Format

Share Document