excitation contraction coupling
Recently Published Documents


TOTAL DOCUMENTS

1378
(FIVE YEARS 98)

H-INDEX

95
(FIVE YEARS 5)

eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Xueyong Wang ◽  
Murad Nawaz ◽  
Chris DuPont ◽  
Jessica H Myers ◽  
Steve RA Burke ◽  
...  

Excitation-contraction coupling (ECC) is the process by which electrical excitation of muscle is converted into force generation. Depolarization of skeletal muscle resting potential contributes to failure of ECC in diseases such as periodic paralysis, intensive care unit acquired weakness and possibly fatigue of muscle during vigorous exercise. When extracellular K+ is raised to depolarize the resting potential, failure of ECC occurs suddenly, over a narrow range of resting potentials. Simultaneous imaging of Ca2+ transients and recording of action potentials (APs) demonstrated failure to generate Ca2+ transients when APs peaked at potentials more negative than –30mV. An AP property that closely correlated with failure of the Ca2+ transient was the integral of AP voltage with respect to time. Simultaneous recording of Ca2+ transients and APs with electrodes separated by 1.6mm revealed AP conduction fails when APs peak below –21mV. We hypothesize propagation of APs and generation of Ca2+ transients are governed by distinct AP properties: AP conduction is governed by AP peak, whereas Ca2+ release from the sarcoplasmic reticulum is governed by AP integral. The reason distinct AP properties may govern distinct steps of ECC is the kinetics of the ion channels involved. Na channels, which govern propagation, have rapid kinetics and are insensitive to AP width (and thus AP integral) whereas Ca2+ release is governed by gating charge movement of Cav1.1 channels, which have slower kinetics such that Ca2+ release is sensitive to AP integral. The quantitative relationships established between resting potential, AP properties, AP conduction and Ca2+ transients provide the foundation for future studies of failure of ECC induced by depolarization of the resting potential.


Author(s):  
Yiliam Cruz-Garcia ◽  
Katalin Barkovits ◽  
Michael Kohlhaas ◽  
Simone Pickel ◽  
Michelle Gulentz ◽  
...  

In cardiomyocytes, Ca2+ influx through L-type voltage-gated calcium channels (LTCCs) following membrane depolarization regulates crucial Ca2+-dependent processes including duration and amplitude of the action potentials and excitation-contraction coupling. LTCCs are heteromultimeric proteins composed of the Cavα1, Cavβ, Cavα2δ and Cavγ subunits. Here, using ascorbate peroxidase (APEX2)-mediated proximity labeling and quantitative proteomics, we identified 61 proteins in the nanoenvironments of Cavβ2 in cardiomyocytes. These proteins are involved in diverse cellular functions such as cellular trafficking, cardiac contraction, sarcomere organization and excitation-contraction coupling. Moreover, pull-down assays and co-immunoprecipitation analyses revealed that Cavβ2 interacts with the ryanodine receptor 2 (RyR2) in adult cardiomyocytes, probably coupling LTCCs and the RyR2 into a supramolecular complex at the dyads. This interaction is mediated by the Src-homology 3 domain of Cavβ2 and is necessary for an effective pacing frequency-dependent increase of the Ca2+-induced Ca2+ release mechanism in cardiomyocytes.


Author(s):  
Bungo Hirose ◽  
Kazuna Ikeda ◽  
Daisuke Yamamoto ◽  
Emiko Tsuda ◽  
Rika Yamauchi ◽  
...  

Author(s):  
Walter C. Thompson ◽  
Paul H. Goldspink

Abstract 14–3-3 proteins (14–3-3 s) are a family of highly conserved proteins that regulate many cellular processes in eukaryotes by interacting with a diverse array of client proteins. The 14–3-3 proteins have been implicated in several disease states and previous reviews have condensed the literature with respect to their structure, function, and the regulation of different cellular processes. This review focuses on the growing body of literature exploring the important role 14–3-3 proteins appear to play in regulating the biochemical and biophysical events associated with excitation–contraction coupling (ECC) in muscle. It presents both a timely and unique analysis that seeks to unite studies emphasizing the identification and diversity of 14–3-3 protein function and client protein interactions, as modulators of muscle contraction. It also highlights ideas within these two well-established but intersecting fields that support further investigation with respect to the mechanistic actions of 14–3-3 proteins in the modulation of force generation in muscle.


2021 ◽  
Vol 154 (9) ◽  
Author(s):  
Thomas A. Lea ◽  
Gavin J. Pinniger ◽  
Peter G. Arthur ◽  
Tony J. Bakker

Duchenne muscular dystrophy (DMD) is a fatal X-linked genetic disease characterized by progressive loss of skeletal muscle. The mechanisms underlying the DMD pathology likely involve the complex interaction between reactive oxygen species (ROS) impaired Ca2+ handling and chronic inflammation, characterized by the presence of immune cells such as neutrophils. Hypochlorous acid (HOCl) is a highly reactive form of ROS produced endogenously via the actions of myeloperoxidase, an enzyme secreted by neutrophils. Myeloperoxidase activity is significantly elevated in dystrophic muscle. This study aimed to determine the effect of HOCl exposure on excitation–contraction coupling and its potential contribution to the dystrophic pathology. Isolated extensor digitorum longus (EDL) muscles and single fibers from C57 (wild type) and mdx (dystrophic) mice were used to investigate the effects of HOCl on whole muscle function, intracellular Ca2+ handling, and myofilament force production. HOCl exposure significantly decreased maximum specific force in isolated EDL muscles by 26% and 49%, respectively, in C57 and mdx mice (P < 0.0001). In single interosseous fibers, HOCl exposure significantly increased resting intracellular Ca2+ concentration by ∼17–19% (P < 0.05) and decreased the amplitude of electrically induced Ca2+ transients by ∼45% and 50%, respectively, in C57 and mdx fibers (C57, P < 0.05; mdx, P < 0.01). These effects of HOCl on resting Ca2+ could be blocked via application of tetracaine (ryanodine receptor blocker) or Gd3+ (stretch-activated channel blocker; C57, P < 0.01; mdx, P < 0.01 for both). The effect of HOCl on Ca2+ transient amplitude was significantly reduced by Gd3+ (C57, P < 0.05; mdx, P < 0.01). In chemically skinned EDL fibers, HOCl exposure decreased maximum Ca2+-activated force by ∼40% in both C57 and mdx fibers (P < 0.001). These results indicate that HOCl potently affects excitation–contraction coupling via impaired Ca2+ handling and myofilament force production. Hence, HOCl potentially links the chronic inflammation, oxidative stress, and impaired Ca2+ handling that underlies the dystrophic pathology.


2021 ◽  
Vol 153 (11) ◽  
Author(s):  
Ben Short

Study reveals how a slowly activating calcium channel is able to control rapid excitation–contraction coupling in skeletal muscle.


2021 ◽  
Vol 134 (18) ◽  
Author(s):  
Ariane Biquand ◽  
Simone Spinozzi ◽  
Paola Tonino ◽  
Jérémie Cosette ◽  
Joshua Strom ◽  
...  

ABSTRACT Titin is a giant sarcomeric protein that is involved in a large number of functions, with a primary role in skeletal and cardiac sarcomere organization and stiffness. The titin gene (TTN) is subject to various alternative splicing events, but in the region that is present at the M-line, the only exon that can be spliced out is Mex5, which encodes for the insertion sequence 7 (is7). Interestingly, in the heart, the majority of titin isoforms are Mex5+, suggesting a cardiac role for is7. Here, we performed comprehensive functional, histological, transcriptomic, microscopic and molecular analyses of a mouse model lacking the Ttn Mex5 exon (ΔMex5), and revealed that the absence of the is7 is causative for dilated cardiomyopathy. ΔMex5 mice showed altered cardiac function accompanied by increased fibrosis and ultrastructural alterations. Abnormal expression of excitation–contraction coupling proteins was also observed. The results reported here confirm the importance of the C-terminal region of titin in cardiac function and are the first to suggest a possible relationship between the is7 and excitation–contraction coupling. Finally, these findings give important insights for the identification of new targets in the treatment of titinopathies.


Sign in / Sign up

Export Citation Format

Share Document