scholarly journals The maximal subgroups of the symmetric group

2021 ◽  
Vol 36 (1) ◽  
Author(s):  
Martino Garonzi
2018 ◽  
Vol 9 (1) ◽  
pp. 27
Author(s):  
Sini P

A subgroup \(H\) of the group \(S(X)\) of all permutations of a set \(X\) is called \(t\)−representable on \(X\) if there exists a topology \(T\) on \(X\) such that the group of homeomorphisms of \((X, T ) = K\). In this paper we study the \(t\)-representability of maximal subgroups of the symmetric group.


2012 ◽  
Vol 40 (2) ◽  
pp. 770-778 ◽  
Author(s):  
H. Amiri ◽  
S. M. Jafarian Amiri

Author(s):  
Heather M Russell ◽  
Julianna Tymoczko

Abstract Webs are planar graphs with boundary that describe morphisms in a diagrammatic representation category for $\mathfrak{sl}_k$. They are studied extensively by knot theorists because braiding maps provide a categorical way to express link diagrams in terms of webs, producing quantum invariants like the well-known Jones polynomial. One important question in representation theory is to identify the relationships between different bases; coefficients in the change-of-basis matrix often describe combinatorial, algebraic, or geometric quantities (e.g., Kazhdan–Lusztig polynomials). By ”flattening” the braiding maps, webs can also be viewed as the basis elements of a symmetric group representation. In this paper, we define two new combinatorial structures for webs: band diagrams and their one-dimensional projections, shadows, which measure depths of regions inside the web. As an application, we resolve an open conjecture that the change of basis between the so-called Specht basis and web basis of this symmetric group representation is unitriangular for $\mathfrak{sl}_3$-webs ([ 33] and [ 29].) We do this using band diagrams and shadows to construct a new partial order on webs that is a refinement of the usual partial order. In fact, we prove that for $\mathfrak{sl}_2$-webs, our new partial order coincides with the tableau partial order on webs studied by the authors and others [ 12, 17, 29, 33]. We also prove that though the new partial order for $\mathfrak{sl}_3$-webs is a refinement of the previously studied tableau order, the two partial orders do not agree for $\mathfrak{sl}_3$.


1995 ◽  
Vol 46 (2) ◽  
pp. 201-234 ◽  
Author(s):  
JOANNA SCOPES
Keyword(s):  

1989 ◽  
Vol 1 (19) ◽  
pp. 3073-3082 ◽  
Author(s):  
K Slevin ◽  
E Castano ◽  
J B Pendry

2014 ◽  
Vol 90 (2) ◽  
pp. 220-226 ◽  
Author(s):  
A. BALLESTER-BOLINCHES ◽  
J. C. BEIDLEMAN ◽  
R. ESTEBAN-ROMERO ◽  
M. F. RAGLAND

AbstractA subgroup $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}H$ of a finite group $G$ is said to be S-semipermutable in $G$ if $H$ permutes with every Sylow $q$-subgroup of $G$ for all primes $q$ not dividing $|H |$. A finite group $G$ is an MS-group if the maximal subgroups of all the Sylow subgroups of $G$ are S-semipermutable in $G$. The aim of the present paper is to characterise the finite MS-groups.


Sign in / Sign up

Export Citation Format

Share Document