t-Representability of maximal subgroups of symmetric groups

2018 ◽  
Vol 9 (1) ◽  
pp. 27
Author(s):  
Sini P

A subgroup \(H\) of the group \(S(X)\) of all permutations of a set \(X\) is called \(t\)−representable on \(X\) if there exists a topology \(T\) on \(X\) such that the group of homeomorphisms of \((X, T ) = K\). In this paper we study the \(t\)-representability of maximal subgroups of the symmetric group.

1996 ◽  
Vol 47 (3) ◽  
pp. 297-311 ◽  
Author(s):  
JACINTA COVINGTON ◽  
DUGALD MACPHERSON ◽  
ALAN MEKLER

1967 ◽  
Vol 10 (3) ◽  
pp. 375-381 ◽  
Author(s):  
Fred Richman

The purpose of this paper is to extend results of Ball [1] concerning maximal subgroups of the group S(X) of all permutations of the infinite set X. The basic idea is to consider S(X) as a group of operators on objects more complicated than X. The objects we consider here are subspaces of the Stone-Čech compactification of the discrete space X and the Boolean algebra of “big setoids” of X.


1987 ◽  
Vol 106 ◽  
pp. 143-162 ◽  
Author(s):  
Nobuaki Obata

The infinite symmetric group is the discrete group of all finite permutations of the set X of all natural numbers. Among discrete groups, it has distinctive features from the viewpoint of representation theory and harmonic analysis. First, it is one of the most typical ICC-groups as well as free groups and known to be a group of non-type I. Secondly, it is a locally finite group, namely, the inductive limit of usual symmetric groups . Furthermore it is contained in infinite dimensional classical groups GL(ξ), O(ξ) and U(ξ) and their representation theories are related each other.


2019 ◽  
Vol 169 (2) ◽  
pp. 231-253
Author(s):  
MARK WILDON

AbstractThe symmetric group on a set acts transitively on the set of its subsets of a fixed size. We define homomorphisms between the corresponding permutation modules, defined over a field of characteristic two, which generalize the boundary maps from simplicial homology. The main results determine when these chain complexes are exact and when they are split exact. As a corollary we obtain a new explicit construction of the basic spin modules for the symmetric group.


2013 ◽  
Vol 63 (6) ◽  
Author(s):  
Temha Erkoç ◽  
Utku Yilmaztürk

AbstractA finite group whose irreducible complex characters are rational valued is called a rational group. Thus, G is a rational group if and only if N G(〈x〉)/C G(〈x〉) ≌ Aut(〈x〉) for every x ∈ G. For example, all symmetric groups and their Sylow 2-subgroups are rational groups. Structure of rational groups have been studied extensively, but the general classification of rational groups has not been able to be done up to now. In this paper, we show that a full symmetric group of prime degree does not have any rational transitive proper subgroup and that a rational doubly transitive permutation group containing a full cycle is the full symmetric group. We also obtain several results related to the study of rational groups.


Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1178
Author(s):  
Athirah Nawawi ◽  
Sharifah Kartini Said Husain ◽  
Muhammad Rezal Kamel Ariffin

A commuting graph is a graph denoted by C ( G , X ) where G is any group and X, a subset of a group G, is a set of vertices for C ( G , X ) . Two distinct vertices, x , y ∈ X , will be connected by an edge if the commutativity property is satisfied or x y = y x . This study presents results for the connectivity of C ( G , X ) when G is a symmetric group of degree n, Sym ( n ) , and X is a conjugacy class of elements of order three in G.


2017 ◽  
Vol 16 (02) ◽  
pp. 1750025 ◽  
Author(s):  
Jinke Hai ◽  
Shengbo Ge ◽  
Weiping He

Let [Formula: see text] be a finite group and let [Formula: see text] be the holomorph of [Formula: see text]. If [Formula: see text] is a finite nilpotent group or a symmetric group [Formula: see text] of degree [Formula: see text], then the normalizer property holds for [Formula: see text].


2017 ◽  
Vol 16 (04) ◽  
pp. 1750065 ◽  
Author(s):  
Ali Reza Moghaddamfar

Let [Formula: see text] be the prime graph associated with a finite group [Formula: see text] and [Formula: see text] be the degree pattern of [Formula: see text]. A finite group [Formula: see text] is said to be [Formula: see text]-fold [Formula: see text]-characterizable if there exist exactly [Formula: see text] nonisomorphic groups [Formula: see text] such that [Formula: see text] and [Formula: see text]. The purpose of this paper is two-fold. First, it shows that the symmetric group [Formula: see text] is [Formula: see text]-fold [Formula: see text]-charaterizable. Second, it shows that there exist many infinite families of alternating and symmetric groups, [Formula: see text] and [Formula: see text], which are [Formula: see text]-fold [Formula: see text]-characterizable with [Formula: see text].


1990 ◽  
Vol s2-42 (1) ◽  
pp. 85-92 ◽  
Author(s):  
H. D. Macpherson ◽  
Cheryl E. Praeger

Sign in / Sign up

Export Citation Format

Share Document