scholarly journals Issues Involving The OSI Concept of Operation For Noble Gas Radionuclide Detection

2011 ◽  
Author(s):  
C Carrigan ◽  
Y Sun
1989 ◽  
Vol 14 (5) ◽  
pp. 467-604 ◽  
Author(s):  
A.Z. Devdariani ◽  
A.L. Zagrebin ◽  
K.B. Blagoev
Keyword(s):  

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 279
Author(s):  
Chuantong Zhang ◽  
Bingkui Miao ◽  
Huaiyu He ◽  
Hongyi Chen ◽  
P. M. Ranjith ◽  
...  

Howardite-Eucrite-Diogenite (HED) meteorite clan is a potential group of planetary materials which provides significant clues to understand the formation and evolution of the solar system. Grove Mountains (GRV) 13001 is a new member of HED meteorite, recovered from the Grove Mountains of Antarctica by the Chinese National Antarctic Research Expedition. This research work presents a comprehensive study of the petrology and mineralogy, chemical composition, noble gas isotopes, cosmic-ray exposure (CRE) age and nominal gas retention age for the meteorite GRV 13001. The output data indicate that GRV 13001 is a monomict basaltic eucrite with typical ophitic/subophitic texture, and it consists mainly of low-Ca pyroxene and plagioclase with normal eucritic chemical compositions. The noble gas based CRE age of the GRV 13001 is approximately 29.9 ± 3.0 Ma, which deviates from the major impact events or periods on the HED parent body. Additionally, the U,Th-4He and 40K-40Ar gas retention ages of this meteorite are ~2.5 to 4.0 Ga and ~3.6 to 4.1 Ga, respectively. Based on the noble gases isotopes and the corresponding ages, GRV 13001 may have experienced intense impact processes during brecciation, and weak thermal event after the ejection event at approximately 30 Ma.


Author(s):  
Kunqi Gao ◽  
Rui Zhao ◽  
Li Sheng

The noble gas compound containing a triple bond of xenon and transition metal Os (i.e. F4XeOsF4, isomer A) is predicted using quantum-chemical calculations. At the MP2 level of theory, the...


Author(s):  
Shuai WANG ◽  
Jian KUANG ◽  
Xuelian HUANG ◽  
Hongyan ZHANG ◽  
Min ZHANG ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 250
Author(s):  
Chuanpeng Liu ◽  
Wenjie Shi ◽  
Junhao Wei ◽  
Huan Li ◽  
Aiping Feng ◽  
...  

The Longquanzhan deposit is one of the largest gold deposits in the Yi-Shu fault zone (central section of the Tan-Lu fault zone) in Shandong Province, China. It is an altered-rock type gold deposit in which ore bodies mainly occur at the contact zone between the overlying Cretaceous rocks and the underlying Neoarchean gneissic monzogranite. Shi et al. reported that this deposit formed at 96 ± 2 Ma using pyrite Rb–Sr dating method and represents a new gold mineralization event in the Shandong Province in 2014. In this paper, we present new He–Ar–S isotopic compositions to further decipher the sources of fluids responsible for the Longquanzhan gold mineralization. The results show that the δ34S values of pyrites vary between 0.9‰ and 4.4‰ with an average of 2.3‰. Inclusion-trapped fluids in ore sulfides have 3He/4He and 40Ar/36Ar ratios of 0.14–0.78 Ra and 482–1811, respectively. These isotopic data indicate that the ore fluids are derived from a magmatic source, which is dominated by crustal components with minor mantle contribution. Air-saturated water may be also involved in the hydrothermal system during the magmatic fluids ascending or at the shallow deposit site. We suggest that the crust-mantle mixing signature of the Longquanzhan gold deposit is genetically related to the Late Cretaceous lithospheric thinning along the Tan-Lu fault zone, which triggers constantly uplifting of the asthenosphere surface and persistent ascending of the isotherm plane to form the gold mineralization-related crustal level magma sources. This genetic model can be applied, to some extent, to explain the ore genesis of other deposits near or within the Tan-Lu fault belt.


Sign in / Sign up

Export Citation Format

Share Document