gold deposits
Recently Published Documents


TOTAL DOCUMENTS

1876
(FIVE YEARS 432)

H-INDEX

73
(FIVE YEARS 9)

Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 96
Author(s):  
Jie Gan ◽  
Hui Li ◽  
Zhengwei He ◽  
Yu Gan ◽  
Junqing Mu ◽  
...  

As the main part of the Indosinian metallogenic province in the eastern part of the Tethys metallogenic domain, Southeast Asia has experienced multiple stages of tectonic magnetic activities accompanied by the formation of rich mineral resources. However, due to the undeveloped economy, low degree of geological work, dense vegetation cover, and lack of obvious prospecting marks, traditional geological prospecting work in the area is not optimal. Consequently, the combination of high-precision geophysics and geochemistry has become an important method of looking for ore bodies deep underground in this area. The Nanpo gold deposit is a hydrothermal gold deposit that occurs in the Indosinian felsic volcanic rock body, and its mineralization is closely related to felsic magmatism. This study carried out comprehensive geophysical and geochemical exploration methods of soil geochemical survey, induced polarization (IP) survey, and audio-frequency magnetotelluric (AMT) survey. Based on the characteristics of geophysical and geochemical anomalies, geological inference, and interpretation, the integrated geophysical and geochemical prospecting criteria of the ore area have been determined: The large-scale and overlapping Au-Ag-Cu anomaly area in the host felsic magmatic rocks (mainly diorite, monzodiorite and granodiorite) is a favorable metallogenic area. Two anomalies, P1–H1 and P3–H6, with the best metallogenetic conditions and the deepest extensions of the known ore bodies, were further selected as engineering verification targets. After the study of the drill core, gold (mineralized) bodies consistent with the anomalies were found, indicating that the combined method is suitable for the exploration of mineral resources in this area, and the prospecting effect is good. At the same time, the metallogenic prediction shows that the deep part of the mining area still has great metallogenic prospects and prospecting potential. The characteristics of geophysical and geochemical anomalies and prospecting experience in the study area can provide references for the prospecting of hydrothermal gold deposits in the Luang Prabang–Loei structural belt.


2022 ◽  
pp. 6-21
Author(s):  
Irina Egorova ◽  
Boris Mikhailov

A forecast of nonfuel mineral production in Russia is considered, based on the integration of the expected life of specific deposits currently exploited and developed. It is shown that mineral safety is fully ensured for copper, nickel, lead, tungsten and tin, whose reserves are sufficient for their extraction, at least at the current level, for 40–50 years and there are real prospects for its significant growth. The sufficiency of other minerals is much lower: for molybdenum and chromium, it is limited to about 30 years, and the extraction of zinc and uranium in Russia may significantly decrease in 20 years. The situation is more difficult with the most liquid solid minerals, like gold and diamonds. The commissioning of mining enterprises at the developed gold deposits can ensure a rapid growth in the production of the precious metal in the coming years. However, at the beginning of the next decade, the resource base depletion of the Olimpiada field and a number of other exploited deposits is predicted. The projects currently implemented for the development of new fields do not compensate for the lost capacity. This may account for a long-term (until the beginning of the 2050s) decline in the Russian gold production, which may be halved against the current level by the end of this period. Such a scenario can only be avoided with the intensification of geological exploration in the coming years. The earlier decrease in the number of diamonds mined in Russia, associated with the depletion of reserves of exploited pipes, is predicted (since 2025). Unless new deposits are discovered and developed, the domestic production of precious stones will steadily decline and, in the 2040s, may be reduced fourfold.


2022 ◽  
pp. 43-59
Author(s):  
Victoria Chikatueva ◽  
Nikita Stepanov ◽  
Andrey Chitalin ◽  
Dmitry Korost

Orogenic gold-quartz deposits have a clear structural control and are accompanied by wallrock metasomatic alteration. However, in detailed modeling of such deposits, there is often a mismatch between the structural plans for high-grade ore zone distribution and metasomatite zones, and the latter are not always associated with faults. This is explained by the evolution of the hydrothermal process and the pulsating nature of the development of the territory. In the early stages of the mineral deposit study, it is very important to reliably determine the distribution of ore zones, since the correct targeting of the drilling program and the economic deposit assessment depend on it. The problem can be solved using the method of X-ray computed tomography (СТ) in the core study. This paper presents the methodology of studying fullsize core samples of gold deposits by using CT. A core sample characterizing the central part of ore body of Drazhnoye deposit (Tarynskoye ore field, Republic of Sakha (Yakutia)) was used as the study material. The sample studied was scanned by a SIEMENS Somatom Perspective tomograph at two energies (80 and 130 keV). As a result, a detailed three-dimensional stereological model of the core was obtained, which made it possible not only to study the distribution of ore minerals in the volume of the entire sample, but also to identify vein bodies of different ages, as well as to study their morphology and trace the distribution patterns of ore mineralization in them. Based on the study results, we can offer a preliminary interpretation of ore mineralization and vein formation sequence.


Geosciences ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 29
Author(s):  
Pavel Kepezhinskas ◽  
Nikolai Berdnikov ◽  
Nikita Kepezhinskas ◽  
Natalia Konovalova

Adakites are Y- and Yb-depleted, SiO2- and Sr-enriched rocks with elevated Sr/Y and La/Yb ratios originally thought to represent partial melts of subducted metabasalt, based on their association with the subduction of young (<25 Ma) and hot oceanic crust. Later, adakites were found in arc segments associated with oblique, slow and flat subduction, arc–transform intersections, collision zones and post-collisional extensional environments. New models of adakite petrogenesis include the melting of thickened and delaminated mafic lower crust, basalt underplating of the continental crust and high-pressure fractionation (amphibole ± garnet) of mantle-derived, hydrous mafic melts. In some cases, adakites are associated with Nb-enriched (10 ppm < Nb < 20 ppm) and high-Nb (Nb > 20 ppm) arc basalts in ancient and modern subduction zones (HNBs). Two types of HNBs are recognized on the basis of their geochemistry. Type I HNBs (Kamchatka, Honduras) share N-MORB-like isotopic and OIB-like trace element characteristics and most probably originate from adakite-contaminated mantle sources. Type II HNBs (Sulu arc, Jamaica) display high-field strength element enrichments in respect to island-arc basalts coupled with enriched, OIB-like isotopic signatures, suggesting derivation from asthenospheric mantle sources in arcs. Adakites and, to a lesser extent, HNBs are associated with Cu–Au porphyry and epithermal deposits in Cenozoic magmatic arcs (Kamchatka, Phlippines, Indonesia, Andean margin) and Paleozoic-Mesozoic (Central Asian and Tethyan) collisional orogens. This association is believed to be not just temporal and structural but also genetic due to the hydrous (common presence of amphibole and biotite), highly oxidized (>ΔFMQ > +2) and S-rich (anhydrite in modern Pinatubo and El Chichon adakite eruptions) nature of adakite magmas. Cretaceous adakites from the Stanovoy Suture Zone in Far East Russia contain Cu–Ag–Au and Cu–Zn–Mo–Ag alloys, native Au and Pt, cupriferous Ag in association witn barite and Ag-chloride. Stanovoy adakites also have systematically higher Au contents in comparison with volcanic arc magmas, suggesting that ore-forming hydrothermal fluids responsible for Cu–Au(Mo–Ag) porphyry and epithermal mineralization in upper crustal environments could have been exsolved from metal-saturated, H2O–S–Cl-rich adakite magmas. The interaction between depleted mantle peridotites and metal-rich adakites appears to be capable of producing (under a certain set of conditions) fertile sources for HNB melts connected with some epithermal Au (Porgera) and porphyry Cu–Au–Mo (Tibet, Iran) mineralized systems in modern and ancient subduction zones.


Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 71
Author(s):  
Ahmed M. Eldosouky ◽  
Reda A. Y. El-Qassas ◽  
Luan Thanh Pham ◽  
Kamal Abdelrahman ◽  
Mansour S. Alhumimidi ◽  
...  

Saudi Arabia covers most of the Arabian Peninsula and is characterized by tectonic regimes ranging from Precambrian to Recent. Using gravity data to produce the lateral boundaries of subsurface density bodies, and edge detection of potential field data, a new subsurface structural map was created to decipher the structural framework controls on the distribution of gold deposits in Saudi Arabia. Moreover, we detected the relationships between major structures and mineral accumulations, thereby simultaneously solving the problem of edge detectors over complex tectonic patterns for both deeper and shallower origins. Analytic signal (ASg), theta map (TM), TDX, and softsign function (SF) filters were applied to gravity data of Saudi Arabia. The results unveil low connectivity along the Najd fault system (NFS) with depth, except perhaps for the central zones along each segment. The central zones are the location of significant gold mineralization, i.e., Fawarah, Gariat Avala, Hamdah, and Ghadarah. Moreover, major fault zones parallel to the Red Sea extend northward from the south, and their connectivity increases with depth and controls numerous gold mines, i.e., Jadmah, Wadi Bidah, Mamilah, and Wadi Leif. These fault zones intersect the NFS in the Midyan Terrane at the northern part of the AS, and their conjugation is suggested to be favorable for gold mineralization. The SF maps revealed the boundary between the Arabian Shield and Arabian Shelf, which comprises major shear zones, implying that most known mineralization sites are linked to post-accretionary structures and are not limited to the Najd fault system (NFS).


2022 ◽  
Vol 962 (1) ◽  
pp. 012046
Author(s):  
B N Abramov

Abstract It is noted that the formation of Mesozoic gold mineralization in Eastern Zabaykalye is associated with magmatic formations of the Amudzhikansky (J2-3), Shakhtaminsky (J2-3), and Sokhondinsky (J1) complexes formed during collisional and post–collisional processes. The nature of these magmatic formations has both mantle (87Sr/86Sr < 0.0706) and crustal components (87Sr/86Sr < 0.0706).Calculation of isotopic composition of oxygen from the ore veins of Aleksandrovsky and Lyubavinsky gold deposits revealed that fluids of magmatic nature were involved in their formation. These data indicate a magmatic source of the Mesozoic gold mineralization in Eastern Zabaykalye.


2021 ◽  
Vol 44 (4) ◽  
pp. 358-368
Author(s):  
B. L. Talgamer

It is in 1930 that the training of mining engineers began in Eastern Siberia on the basis of the Siberian Mining Institute (now Irkutsk National Research Technical University). In 1931 the Department of Mining Arts was organized, which later was named the Department of Mineral Deposits Development. Over the years, the Department has trained more than 7000 graduates – mining engineers, who made a huge contribution in the development of the mining industry in the Irkutsk region and neighboring territories including Mongolia. The Department has trained more than a hundred mining engineers and Masters of science for Mongolia; assisted the lecturers and professors of the Mongolian Polytechnic University (now Mongolian University of Science and Technology) in organizing the educational process for training specialists for the country's mining industry. At its different formation stages the Department of Mineral Deposits Development was headed by well-known scientists – mining engineers, who created three scientific schools for the development of coal, placer and gold deposits; the obtained scientific results were marked with two State awards of the Russian Federation, dozens of doctoral and candidate dissertations were defended and about 100 patents were received. Today, the Department super- vises the training of mining engineers in open-pit and underground mining of mineral deposits, carries out a large amount of research and design work on the orders from mining enterprises, trains academic staff, develops new technologies and technical solutions in order to improve mining operations. The Department is deeply involved in the cooperation with mining enterprises, research and design organizations, as well as with universities that train mining engineers.


2021 ◽  
pp. SP516-2021-39
Author(s):  
J. K. Mortensen ◽  
D. Craw ◽  
D. J. MacKenzie

AbstractExisting published models for orogenic gold deposits (OGDs) do not adequately describe or explain most deposits of Phanerozoic age, and there are numerous reasons why Phanerozoic OGDs might differ significantly from older deposits. We subdivide Phanerozoic OGDs into four main subtypes, based on a number of descriptive criteria, including tectonic setting, lithological siting, and characteristics of the mineralization in each subtype. The four subtypes are: 1) crustal scale fault associated (CSF) subtype, 2) sediment-hosted orogenic gold (SHOG) subtype, 3) forearc (FA) subtype, and 4) syn- and late tectonic dispersed (SLTD) subtype. Lead isotopic studies suggest that Pb and other metals in all but the FA subtype were likely derived from relatively small source reservoirs in the middle or upper crust. OGDs formed in large, lithologically and structurally homogeneous regions will tend to be of the same subtype; however, in geologically complex orogenic belts it is common to find two or more subtypes that formed at approximately the same time. Based on the synthesis of global OGDs of Phanerozoic age districts containing CSF or SHOG subtype deposits appear to have the best potential for hosting multiple large deposits. FA subtype deposits form in a relatively uncommon tectonic setting (accretionary forearc, possibly overlying a subducting spreading ridge) and are likely to be rare. SLTD subtype OGDs are the most common, but most are small and uneconomic, although they commonly generate substantial alluvial gold deposits.


Author(s):  
Xiang Ge ◽  
Chuanbo Shen ◽  
Renjie Zhou ◽  
Peng He ◽  
Jianxin Zhao ◽  
...  

Fluid migration in sedimentary basins enable mass and energy transport and play critical roles in geochemical and geodynamical evolution of sedimentary basins. Moreover, reconstructing sedimentary basin fluid evolution from the geological record aids in constraining the evolution of associated petroleum and mineralization systems. As a relict of fluid flow activity, calcite is often a record of fluid flow and therefore can be used to characterize the fluids responsible for its precipitation. Here we study the Nanpanjiang Basin in South China where petroleum reservoirs and Carlin-type gold deposits spatially coincide. Through in situ U-Pb dating and geochemical analysis (87Sr/86Sr, δ18OVienna standard mean ocean water, δ13CVienna Peedee belemnite, rare earth elements) of calcite, this work constrains the key times related to petroleum migration/accumulation and Carlin-type gold mineralization, defines the basin fluid evolution, and proposes a genetic model for petroleum accumulation and gold mineralization within the Nanpanjiang Basin. The U-Pb age (ca. 241.4 Ma) for the gray/black calcite related to bitumen indicates the petroleum migration/accumulation occurred during the Triassic. The U-Pb date (ca. 106−121 Ma) of the white calcite associated with the gold-bearing pyrite, realgar, and fluorite record the lower timing limit of the Carlin-type gold systems. The geochemical data suggest both calcite types are cogenetic but suffered complex evolution with the gray/black calcite precipitating under low temperatures related to the continuous basin burial and the white calcite affected by post formation alteration related to both hydrothermal and meteoric fluids. Combined with the regional tectonic history, the Early Triassic petroleum migration/accumulation and the Early Cretaceous secondary Carlin-type gold mineralization events are considered to be related to the collision between the Indo-China and South China blocks, and the subduction between the Paleo-Pacific and Eurasian plates, respectively.


Sign in / Sign up

Export Citation Format

Share Document