dissociative recombination
Recently Published Documents


TOTAL DOCUMENTS

801
(FIVE YEARS 44)

H-INDEX

64
(FIVE YEARS 5)

Author(s):  
Mei-Yun Lin ◽  
Raluca Ilie

Ionospheric molecular ions, such as NO+, N2+ and O2+, are gravitationally bound, and are expected to undergo recombination to form a pair of neutral atoms, due to short dissociative recombination lifetime. Therefore, they are expected to be relatively cold in the Earth’s atmosphere, compared with light ions such as H+ and He+, or even heavier ions such as N+ or O+. However, several spacecraft missions observed their presence in the high-altitude ionosphere and the magnetosphere, predominantly during the geomagnetically active times. This hints to the possibility that molecular ions have the ability to acquire sufficient energy in a very short time, and can be used as tracers of mass differentiated vertical transport to understand the mechanisms responsible for “fast ionospheric outflow” and, In this letter, we review the observational data sets that reported on the abundances of molecular ions in the Earth’s magnetosphere-ionosphere system, starting from their first observations by the Sputnik III mission, to the current Arase (ERG) satellite and Enhanced Polar Outflow Probe (e-POP) missions. The available data suggests that molecular ions are quite abundant in the lower atmosphere at all times, but are only seen in the high-altitude ionosphere and magnetosphere during the times of increased geomagnetic activity.


2021 ◽  
Vol 923 (2) ◽  
pp. 190
Author(s):  
Yuni Lee ◽  
Chuanfei Dong ◽  
Valeriy Tenishev

Abstract Exoplanets orbiting M dwarfs within habitable zones are exposed to stellar environments more extreme than that terrestrial planets experience in our solar system, which can significantly impact the atmospheres of the exoplanets and affect their habitability and sustainability. This study provides the first prediction of hot oxygen corona structure and the associated photochemical loss from a 1 bar CO2-dominated atmosphere of a Venus-like rocky exoplanet, where dissociative recombination of O2 + ions is assumed to be the major source reaction for the escape of neutral O atoms and formation of the hot O corona (or exospheres) as on Mars and Venus. We employ a 3D Monte Carlo code to simulate the exosphere of Proxima Centauri b (PCb) based on the ionosphere simulated by a 3D magnetohydrodynamic model. Our simulation results show that variability of the stellar wind dynamic pressure over one orbital period of PCb does not affect the overall spatial structure of the hot O corona but contributes to the change in the global hot O escape rate that varies by an order of magnitude. The escape increases dramatically when the planet possesses its intrinsic magnetic fields as the ionosphere becomes more extended with the presence of a global magnetic field. The extended hot O corona may lead to a more extended H exosphere through collisions between thermal H and hot O, which exemplifies the importance of considering nonthermal populations in exospheres to interpret future observations.


2021 ◽  
Vol 104 (4) ◽  
Author(s):  
Xianwu Jiang ◽  
Josh Forer ◽  
Chi Hong Yuen ◽  
Mehdi Ayouz ◽  
Viatcheslav Kokoouline

2021 ◽  
Vol 171 ◽  
pp. 112693
Author(s):  
Antonio Pimazzoni ◽  
Emanuele Sartori ◽  
Gianluigi Serianni

2021 ◽  
Vol 103 (5) ◽  
Author(s):  
I. I. Fabrikant ◽  
H. B. Ambalampitiya ◽  
I. F. Schneider

2021 ◽  
Vol 39 (2) ◽  
pp. 309-319
Author(s):  
Christopher J. Scott ◽  
Shannon Jones ◽  
Luke A. Barnard

Abstract. We present a method for augmenting spacecraft measurements of thermospheric composition with quantitative estimates of daytime thermospheric composition below 200 km, inferred from ionospheric data, for which there is a global network of ground-based stations. Measurements of thermospheric composition via ground-based instrumentation are challenging to make, and so details about this important region of the upper atmosphere are currently sparse. The visibility of the F1 peak in ionospheric soundings from ground-based instrumentation is a sensitive function of thermospheric composition. The ionospheric profile in the transition region between F1 and F2 peaks can be expressed by the “G” factor, a function of ion production rate and loss rates via ion–atom interchange reactions and dissociative recombination of molecular ions. This in turn can be expressed as the square of the ratio of ions lost via these processes. We compare estimates of the G factor obtained from ionograms recorded at Kwajalein (9∘ N, 167.2∘ E) for 25 times during which the Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED) spacecraft recorded approximately co-located measurements of the neutral thermosphere. We find a linear relationship between G and the molecular-to-atomic composition ratio, with a gradient of 2.55±0.40. Alternatively, using hmF1 values obtained by ionogram inversion, this gradient was found to be 4.75±0.4. Further, accounting for equal ionisation in molecular and atomic species yielded a gradient of 4.20±0.8. This relationship has potential for using ground-based ionospheric measurements to infer quantitative variations in the composition of the neutral thermosphere via a relatively simple model. This has applications in understanding long-term change and the efficacy of the upper atmosphere on satellite drag.


2021 ◽  
Author(s):  
Sana Ahmed ◽  
Kinsuk Acharyya

<p>Comets show a general diversity in their parent volatile composition, but in most cases H<sub>2</sub>O is observed to be the dominant volatile in terms of abundance. This is followed by CO and CO<sub>2</sub>, and trace amounts of other species such as CH<sub>4</sub>, CH<sub>3</sub>OH, O<sub>2</sub>, and NH<sub>3</sub> are also present. However, the observed ratio of n_x/H<sub>2</sub>O varies considerably from one comet to another (n_x represents any parent species other than water).</p><p>We aim to study how the chemistry and dynamics of the cometary coma changes for varying abundances of the major parent volatiles. We have constructed a fluid model, using the principles of conservation of mass, momentum and energy, for our study. Parent volatiles sublimating from the nucleus undergo photolytic reactions due to the solar UV radiation field, resulting in the formation of secondary neutral and ionic species and photoelectrons. Active chemistry occurs in the coma, and some of the chemical reactions taking place are ion-neutral rearrangement, charge exchange, dissociative recombination, electron impact dissociation and radiative de-excitation. The energy that is released due to these chemical reactions is non-uniformly distributed amongst all the species, resulting in different temperatures. Hence,  for a complete description of the coma, we have used a multifluid model whereby the neutrals, ions and electrons are considered as three separate fluids. Apart from chemical reactions, we have also considered the exchange of energy between the three fluids due to elastic and inelastic collisions.</p><p>We consider different initial compositions of the comet, and then use our model to generate the temperature and velocity profiles of the coma, for varying cometocentric distances. We also obtain the number density profiles of the different ionic and neutral species that are created in the coma. We see that changes in the initial parent volatile abundance will modify the temperature profile, and there are significant changes in the ionic abundances. Hence, the parent volatile composition of the comet drives the physico-chemical attributes of the coma.</p>


2021 ◽  
Vol 129 (5) ◽  
pp. 053303
Author(s):  
A. Abdoulanziz ◽  
C. Argentin ◽  
V. Laporta ◽  
K. Chakrabarti ◽  
A. Bultel ◽  
...  

2021 ◽  
Vol 129 (11) ◽  
pp. 1360
Author(s):  
В.А. Иванов

The decaying neon plasma produced by the dielectric barrier discharge (DBD) in a cylindrical tube at a pressure of 0.1–40 Torr has been spectroscopically investigated to analyze the dissociative recombination (DR) of molecular ions with electrons as a mechanism for the formation of excited atoms. It is shown that, at the electron density in the afterglow less than 5•1010 cm-3 the DR is the dominant source of population of 3d levels at pressures PNe ≥ 0.6 Torr. At lower pressures, the optical properties of the decaying plasma are formed to a greater extent by the collisional-radiative recombination of Ne+ ions. A significant variation of the relative intensities of the 3d -> 3p transition lines in the afterglow with a change in gas pressure was found, reflecting the effect of inelastic collisions on the formation of the spectrum of decaying plasma in the near infrared region. From measurements carried out at a pressure of 0.6 Torr, the relative values of the partial DR coefficients for the 3dj levels of the neon atom were found. Comparison of these data with measurements in the near ultraviolet region, containing the lines of 4p -> 3s transitions, indicates the need to take into account the cascade 4p -> 3d transitions to correctly solve the problem of the final products of dissociative recombination.


2020 ◽  
Vol 501 (2) ◽  
pp. 2394-2402
Author(s):  
Hao Gu ◽  
Jun Cui ◽  
Dandan Niu ◽  
Jiang Yu

ABSTRACT Due to the relatively strong gravity on Venus, heavy atmospheric neutrals are difficult to accelerate to the escape velocity. However, a variety of processes, such as the dissociative recombination of ionospheric O$_2^+$, are able to produce hot atoms which could deliver a significant amount of energy to light neutrals and drive their escape. In this study, we construct a Monte Carlo model to simulate atmospheric escape of three light species, H, H2, and He, on Venus via such a knock-on process. Two Venusian background atmosphere models are adopted, appropriate for solar minimum and maximum conditions. Various energy-dependent and species-dependent cross-sections, along with a common strongly forward scattering angle distribution, are used in our calculations. Our model results suggest that knock-on by hot O likely plays the dominant role in driving total atmospheric hydrogen and helium escape on Venus at the present epoch, with a significant portion contributed from regions below the exobase. Substantial variations are also revealed by our calculations. Of special interest is the modelled reduction in escape flux at high solar activities for all species, mainly associated with the enhancement in thermal O concentration near the exobase at high solar activities which hinders escape. Finally, model uncertainties due to several controlling factors, including the distribution of relevant light species in the background atmosphere, the plane-parallel approximation, and the finite O energy distribution, are evaluated.


Sign in / Sign up

Export Citation Format

Share Document