scholarly journals High-Efficiency Triple-Junction Amorphous Silicon Alloy Photovoltaic Technology; Annual Technical Progress Report, 6 March 1998--5 March 1999

10.2172/12162 ◽  
1999 ◽  
Author(s):  
S Guha
1998 ◽  
Vol 507 ◽  
Author(s):  
S. Guha ◽  
J. Yang ◽  
A. Banerjee ◽  
S. Sugiyama

ABSTRACTTwo significant developments took place in 1997 in the field of amorphous silicon alloy photovoltaic technology. First, a world record stable cell efficiency of 13% was demonstrated using a spectral-splitting, triple-junction structure. Second, a triple-junction photovoltaic manufacturing facility of an annual capacity of 5 MW was commissioned. In order to make the transition from R&D to production, critical material issues and deposition methods which ensure the lowest module cost per delivered watt needed to be evaluated. In this paper, we discuss some of these issues with special reference to the cell materials.


1992 ◽  
Author(s):  
A. Catalano ◽  
R.R. Arya ◽  
M. Bennett ◽  
L. Chen ◽  
R. D`Aiello ◽  
...  

1997 ◽  
Vol 467 ◽  
Author(s):  
A. Banerjee ◽  
J. Yang ◽  
S. Guha

ABSTRACTAn initial conversion efficiency of 13.5% has been obtained on a triple-junction triple-bandgap device fabricated in a large-area deposition reactor capable of producing one-square-foot modules. The intrinsic layer of the top cell is a wide bandgap amorphous silicon alloy. The middle and bottom cells employ high quality amorphous silicon-germanium alloy. The high efficiency of the triple-junction cell is attributed to the relative reduction of the optical loss in the top tunnel junction and the improvement in the quality of the middle and bottom component cells. Triple-junction devices with initial efficiency of 13.3% have shown saturation at 11.6% after light soaking. Modules of aperture area 909cm2 have been fabricated using an assembly process similar to the one being currently used in our manufacturing line. The module design consists of onelarge-area, high-current monolithic multijunction device. The status of the small-area devices andmodules is described


Sign in / Sign up

Export Citation Format

Share Document