junction structure
Recently Published Documents


TOTAL DOCUMENTS

360
(FIVE YEARS 53)

H-INDEX

44
(FIVE YEARS 6)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kurea Nakagawa ◽  
Tomoyuki Yokouchi ◽  
Yuki Shiomi

AbstractPeltier effects, which produce a heat flux at the junction of two different materials, have been an important technology for heating and cooling by electrical means. Whereas Peltier devices have advantages such as cleanliness, silence, compactness, flexibility, reliability, and efficiency, relatively complicated modular structures are unavoidable, leading to a higher cost than that of commonly used refrigeration technology. Here, we provide a concept of a Peltier device composed of a single magnetic material exhibiting a first-order magnetic transition. Our concept is based on a controllable junction structure consisting of two magnetic phases with opposite Peltier coefficients instead of a semiconductor junction. Using $${\mathrm{Mn}}_{1.96}{\mathrm{Cr}}_{0.04}\mathrm{Sb}$$ Mn 1.96 Cr 0.04 Sb samples with the first-order magnetic transition between ferrimagnetic (FI) and antiferromagnetic (AF) states, we successfully made a stable junction structure of AF/FI/AF by a pulse heating method and achieved a maximum Peltier coefficient of 0.58 mV. Our device concept was further verified by a numerical simulation based on a finite element method. The single-material Peltier effect reported here avoids a complex device design involving material junctions and is importantly reconfigurable.


2021 ◽  
Author(s):  
Kurea Nakagawa ◽  
Tomoyuki Yokouchi ◽  
Yuki Shiomi

Abstract Peltier effects, which produce a heat flux at the junction of two different materials, have been an important technology for heating and cooling by electrical means. Whereas Peltier devices have advantages such as cleanliness, silence, compactness, flexibility, reliability, and efficiency, relatively complicated modular structures are unavoidable, leading to a higher cost than that of commonly used refrigeration technology. Here, we provide a concept of a Peltier device composed of a single magnetic material exhibiting a first-order magnetic transition. Our concept is based on a controllable junction structure consisting of two magnetic phases with opposite Peltier coefficients instead of a semiconductor junction. Using Mn1.96Cr0.04Sb samples with the first-order magnetic transition between ferrimagnetic (FI) and antiferromagnetic (AF) states, we successfully made a stable junction structure of AF/FI/AF by a pulse heating method and achieved a maximum Peltier coefficient of 0.58 mV. Our device concept was further verified by a numerical simulation based on a finite element method. The single-material Peltier effect reported here avoids a complex device design involving material junctions and is importantly reconfigurable.


2021 ◽  
Vol 8 ◽  
Author(s):  
Nilay Maji ◽  
Subhasis Shit ◽  
T. K. Nath

In this article, the fabrication of a Ni0.65Zn0.35Fe2O4/MgO/p-Si heterostructure device has been optimized using the pulsed laser deposition (PLD) technique, and a detailed investigation of its structural, electrical, and magnetic features has been performed experimentally. The electronic and magneto-transport characteristics have been explored in the temperature range of 100–300 K. The current-voltage (I-V) characteristics of the heterojunction have been recorded, which displayed an excellent rectifying magnetic tunnel diode-like behavior throughout that temperature regime. The application of an external magnetic field parallel to the plane of the NZFO film causes the current (I) across the junction to decrease, clearly indicating positive junction magnetoresistance (JMR) of the heterostructure. The root of displaying positive magnetoresistance in our heterojunction has been well justified using the standard spin injection model. The electrical injection of spin-polarized carriers and its accumulation and detection in a p-Si channel have been demonstrated using the NZFO/MgO tunnel contact using a three-terminal (3-T) Hanle device. The parameters such as spin lifetime (99 ps), spin diffusion length (276 nm), and spin polarization (0.44) have been estimated from the Hanle curve detected in our heterostructure at room temperature, making the Ni0.65Zn0.35Fe2O4/MgO/p-Si device a very favorable promising junction structure in the field of spintronics for several device appliances in the future.


2021 ◽  
Vol 13 (17) ◽  
pp. 9933
Author(s):  
Zhongtai Jiang ◽  
Dexin Yu ◽  
Huxing Zhou ◽  
Siliang Luan ◽  
Xue Xing

The phenomenon of stop-and-go traffic and its environmental impact has become a crucial issue that needs to be tackled, in terms of the junctions between freeway and urban road networks, which consist of freeway off-ramps, downstream intersections, and the junction section. The development of Connected and Automated Vehicles (CAVs) has provided promising solutions to tackle the difficulties that arise along intersections and freeway off-ramps separately. However, several problems still exist that need to be handled in terms of junction structure, including vehicle merging trajectory optimization, vehicle crossing trajectory optimization, and heterogeneous decision-making. In this paper, a two-stage CAV trajectory optimization strategy is presented to improve fuel economy and to reduce delays through a joint framework. The first stage considers an approach to determine travel time considering the different topological structures of each subarea to ensure maximum capacity. In the second stage, Pontryagin’s Minimum Principle (PMP) is employed to construct Hamiltonian equations to smooth vehicle trajectory under the requirements of vehicle dynamics and safety. Targeted methods are devised to avoid driving backwards and to ensure an optimal vehicle gap, which make up for the shortcomings of the PMP theory. Finally, simulation experiments are designed to verify the effectiveness of the proposed strategy. The evaluation results show that our strategy could effectively militate travel delays and fuel consumption.


2021 ◽  
Vol 22 (14) ◽  
pp. 7677
Author(s):  
Ashley Monaco ◽  
Ben Ovryn ◽  
Josephine Axis ◽  
Kurt Amsler

The epithelial cell tight junction structure is the site of the transepithelial movement of solutes and water between epithelial cells (paracellular permeability). Paracellular permeability can be divided into two distinct pathways, the Pore Pathway mediating the movement of small ions and solutes and the Leak Pathway mediating the movement of large solutes. Claudin proteins form the basic paracellular permeability barrier and mediate the movement of small ions and solutes via the Pore Pathway. The Leak Pathway remains less understood. Several proteins have been implicated in mediating the Leak Pathway, including occludin, ZO proteins, tricellulin, and actin filaments, but the proteins comprising the Leak Pathway remain unresolved. Many aspects of the Leak Pathway, such as its molecular mechanism, its properties, and its regulation, remain controversial. In this review, we provide a historical background to the evolution of the Leak Pathway concept from the initial examinations of paracellular permeability. We then discuss current information about the properties of the Leak Pathway and present current theories for the Leak Pathway. Finally, we discuss some recent research suggesting a possible molecular basis for the Leak Pathway.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Keigo Otsuka ◽  
Nan Fang ◽  
Daiki Yamashita ◽  
Takashi Taniguchi ◽  
Kenji Watanabe ◽  
...  

AbstractWhen continued device scaling reaches the ultimate limit imposed by atoms, technology based on atomically precise structures is expected to emerge. Device fabrication will then require building blocks with identified atomic arrangements and assembly of the components without contamination. Here we report on a versatile dry transfer technique for deterministic placement of optical-quality carbon nanotubes. Single-crystalline anthracene is used as a medium which readily sublimes by mild heating, leaving behind clean nanotubes and thus enabling bright photoluminescence. We are able to position nanotubes of a desired chirality with a sub-micron accuracy under in-situ optical monitoring, thereby demonstrating deterministic coupling of a nanotube to a photonic crystal nanobeam cavity. A cross junction structure is also designed and constructed by repeating the nanotube transfer, where intertube exciton transfer is observed. Our results represent an important step towards development of devices consisting of atomically precise components and interfaces.


Sign in / Sign up

Export Citation Format

Share Document