scholarly journals Lepton scattering and the slope of the Regge trajectory in an Su2 Ⓧ Su2 Ⓧ U1 gauge theory

1976 ◽  
Author(s):  
Duane A. Dicus ◽  
Vigdor L. Teplitz
2020 ◽  
Vol 2020 (5) ◽  
Author(s):  
Yasuhiro Hayashi ◽  
Takahiro Ogino ◽  
Tadakatsu Sakai ◽  
Shigeki Sugimoto

Abstract We analyze excited baryon states using a holographic dual of quantum chromodynamics that is defined on the basis of an intersecting D4/D8-brane system. Studies of baryons in this model have been made by regarding them as a topological soliton of a gauge theory on a five-dimensional curved spacetime. However, this allows one to obtain only a certain class of baryons. We attempt to present a framework such that a whole set of excited baryons can be treated in a systematic way. This is achieved by employing the original idea of Witten, which states that a baryon is described by a system composed of $N_c$ open strings emanating from a baryon vertex. We argue that this system can be formulated by an Atiyah–Drinfeld–Hitchin–Manin-type matrix model of Hashimoto–Iizuka–Yi together with an infinite tower of the open string massive modes. Using this setup, we work out the spectra of excited baryons and compare them with the experimental data. In particular, we derive a formula for the nucleon Regge trajectory assuming that the excited nucleons lying on the trajectory are characterized by the excitation of a single open string attached on the baryon vertex.


1976 ◽  
Vol 13 (11) ◽  
pp. 3139-3141
Author(s):  
Duane A. Dicus ◽  
Vigdor L. Teplitz ◽  
J. E. Young

Author(s):  
John Iliopoulos

All ingredients of the previous chapters are combined in order to build a gauge invariant theory of the interactions among the elementary particles. We start with a unified model of the weak and the electromagnetic interactions. The gauge symmetry is spontaneously broken through the BEH mechanism and we identify the resulting BEH boson. Then we describe the theory known as quantum chromodynamics (QCD), a gauge theory of the strong interactions. We present the property of confinement which explains why the quarks and the gluons cannot be extracted out of the protons and neutrons to form free particles. The last section contains a comparison of the theoretical predictions based on this theory with the experimental results. The agreement between theory and experiment is spectacular.


This volume contains lectures delivered at the Les Houches Summer School ‘Integrability: from statistical systems to gauge theory’ held in June 2016. The School was focussed on applications of integrability to supersymmetric gauge and string theory, a subject of high and increasing interest in the mathematical and theoretical physics communities over the past decade. Relevant background material was also covered, with lecture series introducing the main concepts and techniques relevant to modern approaches to integrability, conformal field theory, scattering amplitudes, and gauge/string duality. The book will be useful not only to those working directly on integrablility in string and guage theories, but also to researchers in related areas of condensed matter physics and statistical mechanics.


Sign in / Sign up

Export Citation Format

Share Document