scholarly journals Development of Physics-Based Numerical Models for Uncertainty Quantification of Selective Laser Melting Processes - 2015 Annual Progress Report

2015 ◽  
Author(s):  
A. Anderson ◽  
Jean-Pierre Delplanque
Author(s):  
Recep M. Gorguluarslan ◽  
Seung-Kyum Choi ◽  
Hae-jin Choi

A methodology is proposed for uncertainty quantification to accurately predict the mechanical response of lattice structures fabricated by additive manufacturing. Effective structural properties of the lattice structures are characterized using a multi-level stochastic upscaling process that propagates the quantified uncertainties at strut level to the lattice structure level. To obtain realistic simulation models for the stochastic upscaling process, high resolution finite element models of individual struts were reconstructed from the micro-CT scan images of lattice structures which are fabricated by selective laser melting. The upscaling process facilitates obtaining of the homogenized strut properties of the lattice structure to reduce the computational cost of the detailed simulation model for the lattice structure. Bayesian Information Criterion is utilized to quantify the uncertainties with parametric distributions based on the statistical data obtained from the reconstructed strut models. A systematic validation approach that can minimize the experimental cost is also utilized to assess the predictive capability of the stochastic upscaling method used at strut level and lattice structure level. In comparison with physical compression tests, the proposed methodology of linking the uncertainty quantification with multi-level stochastic upscaling method enabled an accurate prediction of the elastic behavior of the lattice structure by accounting for the uncertainties introduced by the additive manufacturing process.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1424
Author(s):  
Maria Rita Ridolfi ◽  
Paolo Folgarait ◽  
Andrea Di Schino

The rapidly ascending trend of additive manufacturing techniques requires a tailoring of existing solidification models and the development of new numerical tools. User-friendly numerical models can be a valid aid in order to optimize operating parameter ranges with the scope to extend the modelling tools to already existing or innovative alloys. In this paper a modelling approach is described simulating the generation of single tracks on a powder bed system in a selective laser melting process. The approach we report attains track geometry as a function of: alloy thermo-physical properties, laser speed and power, powder bed thickness. Aim of the research is to generate a numerical tool able to predict laser power and speed ranges in manufacturing porosity-free printed parts without lack of fusion and keyhole pores. The approach is based on a simplified description of the physical aspects. Main simplifications concern: the laser energy input, the formation of the pool cavity, and the powder bed thermo-physical properties. The model has been adjusted based on literature data providing the track’s geometry (width and depth) and relative density. Such data refer to different alloys. In particular, Ti6Al4V, Inconel625, Al7050, 316L and pure copper are considered. We show that the printing process presents features common to all alloys. This allows the model to predict the printing behavior of an alloy from its physical properties, avoiding the need to perform specific experimental activities.


Equipment ◽  
2006 ◽  
Author(s):  
S. Tsopanos ◽  
M. Wong ◽  
I. Owen ◽  
C. J. Sutcliffe

Author(s):  
M.A. Kaplan ◽  
◽  
М.A. Smirnov ◽  
A.A. Kirsankin ◽  
M.A. Sevostyanov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document