hollow structures
Recently Published Documents


TOTAL DOCUMENTS

310
(FIVE YEARS 93)

H-INDEX

44
(FIVE YEARS 7)

Author(s):  
Yu Zhang ◽  
Shuai Han ◽  
Mingyuan Wang ◽  
Siwei Liu ◽  
Guiwu Liu ◽  
...  

AbstractOne-dimensional nanofibers can be transformed into hollow structures with larger specific surface area, which contributes to the enhancement of gas adsorption. We firstly fabricated Cu-doped In2O3 (Cu-In2O3) hollow nanofibers by electrospinning and calcination for detecting H2S. The experimental results show that the Cu doping concentration besides the operating temperature, gas concentration, and relative humidity can greatly affect the H2S sensing performance of the In2O3-based sensors. In particular, the responses of 6%Cu-In2O3 hollow nanofibers are 350.7 and 4201.5 to 50 and 100 ppm H2S at 250 °C, which are over 20 and 140 times higher than those of pristine In2O3 hollow nanofibers, respectively. Moreover, the corresponding sensor exhibits excellent selectivity and good reproducibility towards H2S, and the response of 6%Cu-In2O3 is still 1.5 to 1 ppm H2S. Finally, the gas sensing mechanism of Cu-In2O3 hollow nanofibers is thoroughly discussed, along with the assistance of first-principles calculations. Both the formation of hollow structure and Cu doping contribute to provide more active sites, and meanwhile a little CuO can form p—n heterojunctions with In2O3 and react with H2S, resulting in significant improvement of gas sensing performance. The Cu-In2O3 hollow nanofibers can be tailored for practical application to selectively detect H2S at lower concentrations.


2022 ◽  
Vol 8 ◽  
Author(s):  
Zenglou Li ◽  
Chong Li ◽  
Shuohan Li ◽  
Demeng Yin ◽  
Zhenguo Qi ◽  
...  

Due to the inherent issue of requiring rigid back support, friction stir welding (FSW) has serious limitations for the welding of hollow structures. Self-supporting friction stir welding was proposed to join hollow aluminum extrusions, which could reduce the hindrance of the welding tool and the requirement of rigid back support. In this paper, finite element modeling analyses were carried out for the asymmetric temperature field in the process of self-supporting FSW. The peak temperature of the stir zone appeared in the upper shoulder affected zone, followed by the lower shoulder affected zone. In the upper shoulder affected zone, a peak temperature was not shown at the center of the curve due to the positive correlation between heat generation and radius and different heat dissipation rates. Considering the influence of thermal input and rotation speed on joint formation, 200 mm/min travel speed and 800 rpm rotation speed are the most proper parameters for 5-mm-thick 6082-T6 aluminum alloy self-supporting FSW butt welds.


Engineering ◽  
2022 ◽  
Author(s):  
Bingcong Jian ◽  
Frédéric Demoly ◽  
Yicha Zhang ◽  
H. Jerry Qi ◽  
Jean-Claude André ◽  
...  

Author(s):  
Ran Liu ◽  
Gaiping Du ◽  
Bin Liao ◽  
Weixin Xiao ◽  
Zhenguo An ◽  
...  

Due to their multiple dissipation mechanisms, low density and easy tailored impedance matching, heterogeneous hollow structures are promising candidates for microwave absorbents towards wideband absorption and lightweight design. In this...


2021 ◽  
pp. 1-7
Author(s):  
Mario A. Sandoval-Molina ◽  
Bernardo Rafael Lugo-García ◽  
Alan Daniel Mendoza-Mendoza ◽  
Mariusz Krzysztof Janczur

Abstract Domatia are hollow structures in plants occupied by ant colonies, in turn ants provide protection against herbivores. In plants, competition for resources has driven sex-related changes in the patterns of resource allocation to life-history traits and defence traits. The resource-competition hypothesis (RCH) proposes that female plants due to their higher investment in reproduction will allocate fewer resources to defence production, showing greater herbivore damage than other sexual forms. We hypothesise the existence of sex-related differences in defensive traits of domatia-bearing plants, being female plants less defended due to differences in domatia traits, such as size, number of domatia and their position, exhibiting more herbivore damage than hermaphrodite plants of Myriocarpa longipes, a facultative neotropical myrmecophyte. We found eight species of ants inhabiting domatia; some species co-inhabited the same plant, even the same branch. Our results are consistent with the predictions of RCH, as female plants had ant-inhabited domatia restricted to the middle position of their branches and exhibited greater herbivore damage in leaves than hermaphrodites. However, we did not find differences in domatia size and leaf area between sexual forms. Our study provides evidence for intersexual differences in domatia position and herbivory in a facultative ant–plant mutualism in M. longipes. We highlight the importance of considering the plant sex in ant–plant interactions. Differences in resource allocation related to sexual reproduction could influence the outcome of ant–plant interactions.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 53
Author(s):  
Hongjuan Wang ◽  
Xuefei Liu ◽  
Olena Saliy ◽  
Wei Hu ◽  
Jingui Wang

Hollow-structured mesoporous silica has wide applications in catalysis and drug delivery due to its high surface area, large hollow space, and short diffusion mesochannels. However, the synthesis of hollow structures usually requires sacrificial templates, leading to increased production costs and environmental problems. Here, for the first time, amino-functionalized mesoporous silica hollow spheres were synthesized by using CO2 gaseous bubbles as templates. The assembly of anionic surfactants, co-structure directing agents, and inorganic silica precursors around CO2 bubbles formed the mesoporous silica shells. The hollow silica spheres, 200–400 nm in size with 20–30 nm spherical shell thickness, had abundant amine groups on the surface of the mesopores, indicating excellent applications for CO2 capture, Knoevenagel condensation reaction, and the controlled release of Drugs.


Small ◽  
2021 ◽  
pp. 2103561
Author(s):  
Wei Zhang ◽  
Ning Han ◽  
Jiangshui Luo ◽  
Xu Han ◽  
Shihui Feng ◽  
...  

2021 ◽  
Vol 11 (04) ◽  
Author(s):  
Meijie Chen ◽  
Shuang Li ◽  
Dan Pang ◽  
Yanwei Zhao ◽  
Yuan Yang ◽  
...  

2021 ◽  
Vol 7 (10) ◽  
pp. 836
Author(s):  
Veronika E. Mayer ◽  
Sybren de Hoog ◽  
Simona M. Cristescu ◽  
Luciano Vera ◽  
Francesc X. Prenafeta-Boldú

Black fungi of the order Chaetothyriales are grown by many tropical plant-mutualistic ants as small so-called “patches” in their nests, which are located inside hollow structures provided by the host plant (“domatia”). These fungi are introduced and fostered by the ants, indicating that they are important for the colony. As several species of Chaetothyriales tolerate, adsorb, and metabolize toxic volatiles, we investigated the composition of volatile organic compounds (VOCs) of selected domatia in the Azteca/Cecropia ant-plant mutualism. Concentrations of VOCs in ant-inhabited domatia, empty domatia, and background air were compared. In total, 211 compounds belonging to 19 chemical families were identified. Ant-inhabited domatia were dominated by ketones with 2-heptanone, a well-known ant alarm semiochemical, as the most abundant volatile. Empty domatia were characterized by relatively high concentrations of the monoterpenes d-limonene, p-cymene and β-phellandrene, as well as the heterocyclic sulphur-containing compound, benzothiazole. These compounds have biocidal properties and are primarily biosynthesized by plants as a defense mechanism. Interestingly, most of the latter compounds were present at lower concentrations in ant inhabited domatia than in non-colonized ones. We suggest that Chaetothyriales may play a role in reducing the VOCs, underlining that the mutualistic nature of these fungi as VOCs accumulation might be detrimental for the ants, especially the larvae.


Sign in / Sign up

Export Citation Format

Share Document