melting process
Recently Published Documents





2022 ◽  
Vol 226 ◽  
pp. 107095
Zefeng Ge ◽  
Xi Cao ◽  
Zhenting Zha ◽  
Yuna Ma ◽  
Mingxun Zeng ◽  

2022 ◽  
Vol 46 ◽  
pp. 103867
Fernando Claudio Spengler ◽  
Rejane De Césaro Oliveski ◽  
Luiz Alberto Oliveira Rocha ◽  
Cesare Biserni

Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 109
Haijian Li ◽  
Hao Zou ◽  
Zhihua Sun ◽  
Yi Xu ◽  
Changjian Wang ◽  

The composition, structure, and thermal behaviors of yttrium-containing phosphate glasses were studied in this work, and the glass-ceramics were prepared via the two-step crystallization method. The XRD and SEM-EDS results show the forming range of the phosphate glass system and the formation of YPO4 (xenotime) due to the addition of excessive Y2O3. The spectroscopic characterization of these glasses presented shifts of the infrared and Raman bands, demonstrating the depolymerization of the glass network and the formation of novel P–O–Y bonds, and the deconvoluted Raman spectra also exhibited the occurrence of the disproportionation reaction in the glass melting process. The content of non-bridging oxygen (NBOs) from the UV–vis spectra first increased and then decreased with increasing Y2O3. The thermal behaviors show that the Y2O3 reduced the crystallization peak temperature and the thermal stability of the glasses. The crystalline behaviors of the phosphate glass matrix were investigated at different crystallization times of 2–10 h, and a transformation of the crystallization mechanism from surface to volume crystallization was found. The yttrium phosphate glass-ceramics crystallized for 10 h exhibited transformation of the main crystalline phases with increasing Y2O3, and the grain-oriented crystalline surface became irregular.

Alloys ◽  
2022 ◽  
Vol 1 (1) ◽  
pp. 3-14
Mario Wolf ◽  
Jan Flormann ◽  
Timon Steinhoff ◽  
Gregory Gerstein ◽  
Florian Nürnberger ◽  

A new approach for the development of thermoelectric materials, which focuses on a high-power factor instead of a large figure of merit zT, has drawn attention in recent years. In this context, the thermoelectric properties of Cu-Ni-based alloys with a very high electrical conductivity, a moderate Seebeck coefficient, and therefore a high power factor are presented as promising low-cost alternative materials for applications aiming to have a high electrical power output. The Cu-Ni-based alloys are prepared via an arc melting process of metallic nanopowders. The heavy elements tin and tungsten are chosen for alloying to further improve the power factor while simultaneously reducing the high thermal conductivity of the resulting metal alloy, which also has a positive effect on the zT value. Overall, the samples prepared with low amounts of Sn and W show an increase in the power factor and figure of merit zT compared to the pure Cu-Ni alloy. These results demonstrate the potential of these often overlooked metal alloys and the utilization of nanopowders for thermoelectric energy conversion.

2022 ◽  
Bingkun Huang ◽  
Shimi Yang ◽  
Jun Wang ◽  
Peter D Lund

Abstract The shape of container influences natural convection inside a latent heat storage with a phase change material (PCM). Often the geometrical design of a PCM container is based on empirical observations. To enhance convection and melting of the PCM, authors propose here new design guidelines for an improved container. Using the so-called Co-factor method as the optimized basis, which is defined as the vector product of the velocity and temperature gradient, the new design method strives to raise the velocity of natural convection in liquid PCM, increase the amount of PCM in the direction of the convective flow, and reduce the amount of PCM far from the heating surface. Following these guidelines and Co factor, an optimized PCM container with an elongated and curved shape is proposed and compared to a rectangular container. Numerical simulations indicated that the total melting time of the PCM in the optimized container could be reduced by more than 20% compared to the rectangular one. The higher natural convection velocity and the better use of it to melt the PCM in the optimized container space attributed to the better performance than that in rectangular container. The results can be used to design more effective PCM storage systems.

2022 ◽  
pp. 3-8
Y. A. Kabdylkakov ◽  
A. S. Suraev

The article considers the possibility of using the method of multiphase fluid Volume of Fluid (VOF), the Ansys Fluent program, for numerical simulation of the melting process of the materials of the experimental device and their movement over the volume of the computational domain. For modeling the design of a typical experimental device tested in the reactor was selected, a two-dimensional computational model was developed, methods for solving the thermal problem were described, and the simulation results were presented.

2022 ◽  
Vol 7 (1) ◽  
pp. 121-142
Zonghong Xiong ◽  
Wei Wei ◽  
Ying Zhou ◽  
Yue Wang ◽  

<abstract><p>Due to its unique performance of high efficiency, fast heating speed and low power consumption, induction heating is widely and commonly used in many applications. In this paper, we study an optimal control problem arising from a metal melting process by using a induction heating method. Metal melting phenomena can be modeled by phase field equations. The aim of optimization is to approximate a desired temperature evolution and melting process. The controlled system is obtained by coupling Maxwell's equations, heat equation and phase field equation. The control variable of the system is the external electric field on the local boundary. The existence and uniqueness of the solution of the controlled system are showed by using Galerkin's method and Leray-Schauder's fixed point theorem. By proving that the control-to-state operator $ P $ is weakly sequentially continuous and Fréchet differentiable, we establish an existence result of optimal control and derive the first-order necessary optimality conditions. This work improves the limitation of the previous control system which only contains heat equation and phase field equation.</p></abstract>

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 129
Sameh E. Ahmed ◽  
Aissa Abderrahmane ◽  
Sorour Alotaibi ◽  
Obai Younis ◽  
Radwan A. Almasri ◽  

Using phase change materials (PCMs) in energy storage systems provides various advantages such as energy storage at a nearly constant temperature and higher energy density. In this study, we aimed to conduct a numerical simulation for augmenting a PCM’s melting performance within multiple tubes, including branched fins. The suspension contained Al2O3/n-octadecane paraffin, and four cases were considered based on a number of heated fins. A numerical algorithm based on the finite element method (FEM) was applied to solve the dimensionless governing system. The average liquid fraction was computed over the considered flow area. The key parameters are the time parameter (100 ≤t≤600 s) and the nanoparticles’ volume fraction (0%≤φ≤8%). The major outcomes revealed that the flow structures, the irreversibility of the system, and the melting process can be controlled by increasing/decreasing number of the heated fins. Additionally, case four, in which eight heated fins were considered, produced the largest average liquid fraction values.

Sign in / Sign up

Export Citation Format

Share Document