scholarly journals Impact strength of the uranium-6 weight percent niobium alloy between -198/sup 0/ and +200/sup 0/C

1981 ◽  
Author(s):  
R.C. Anderson
1981 ◽  
Author(s):  
R C Anderson ◽  
D E Beck ◽  
T G Kollie ◽  
E J Zorinsky ◽  
J M Jones

e-Polymers ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 437-443 ◽  
Author(s):  
Hyeong Min Yoo ◽  
Moo Sun Kim ◽  
Bum Soo Kim ◽  
Dong Jun Kwon ◽  
Sung Woong Choi

AbstractDicyclopentadiene (DCPD) resin has gained popularity owing to its fast curing time and ease of processing with a low viscosity in the monomer state. In the present study, the impact and shear properties of a carbon fiber (CF)/p-DCPD composite were investigated. The CF/p-DCPD composite was manufactured by vacuum-assisted resin transfer molding with CF as the reinforcement and p-DCPD as the resin with a maximum fiber volume fraction of 55 weight percent. Impact and shear properties of the CF/p-DCPD composite were evaluated and compared with those of a CF/Epoxy composite. The maximum shear stress and modulus of the CF/p-DCPD composite were lower than that of the CF/Epoxy composite. However, the CF/p-DCPD composite had higher toughness than that of the CF/Epoxy composite; this indicates that it is tougher and exhibits a more ductile load-displacement response with a lower modulus and larger failure deformation. The impact strength of the CF/p-DCPD composite was about three time that of the CF/Epoxy composite. The higher impact strength of the CF/p-DCPD composite is attributed to the resin characteristics: epoxy resin has a more brittle behavior, and hence, higher energy is required for crack propagation due to fracture.


Sign in / Sign up

Export Citation Format

Share Document