epoxy composite
Recently Published Documents


TOTAL DOCUMENTS

3168
(FIVE YEARS 823)

H-INDEX

78
(FIVE YEARS 14)

Author(s):  
Florent Retailleau ◽  
Vadim Allheily ◽  
Lionel Merlat ◽  
Jean-François Henry ◽  
Jaona Harifidy Randrianalisoa

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 333
Author(s):  
Amal Nassar ◽  
Mona Younis ◽  
Mohamed Ismail ◽  
Eman Nassar

This work investigated the effects of using a new fabrication technique to prepare polymer composite on the wear-resistant performance of epoxy resin composites under dry friction conditions. Polymer composite samples with different weight contents of silicon carbide (SiC) particles were manufactured. This paper addresses the wear behavior of the obtained samples. With the suggested technique, the samples were prepared from epoxy/silicon carbide particles using a layer of thin kraft paper to prevent the sedimentation of the ceramic particles and to control the weight content of ceramic in the polymer. Kraft paper was used as a layer in the polymer composite. The hardness, wear resistance, and water absorption capacity of the produced epoxy composite samples prepared using the kraft paper technique were evaluated. The morphology of epoxy composite samples showed a significant improvement in the ceramic distribution and enhancement of interface bonding between ceramic and the polymer. The hardness values of the developed polymer composites were enhanced by up to 42.8%, which was obtained at 18 wt.% SiC particles. Increasing the ceramic content in the epoxy also led to the enhancement of wear resistance compared with pure epoxy. The results of the microstructure study also showed that the kraft paper layers helped in maintaining the distribution of the ceramic particles according to the previously specified content in each layer in the sample. Wear tests showed that the wear rate of the polymer composite decreased with the increase in the ceramic content. This study provides a new recycling method for using old kraft paper in polymer composite manufacturing to improve the distribution of ceramic particles in the polymer matrix.


2022 ◽  
pp. 131678
Author(s):  
Jian Gao ◽  
Yiwei Long ◽  
Kangning Wu ◽  
Jianying Li ◽  
Guilai Yin

2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Vivian N. Mbagwu ◽  
Olayinka O. Adewumi ◽  
Modupe A. Onitiri

The thermal properties of epoxy composites reinforced with iron ore tailings were used to investigate the thermal performance of the composite as heat resistant material. Thermal properties are important parameters for determining the behaviour and appropriate applications of materials. This paper focuses on investigating the thermal performance of epoxy composite reinforced with iron ore tailings (IOT) of particles sizes 150 µm, 10% reinforced. The thermal properties of the selected epoxy-IOT composite were specific heat capacity – 2352 J/kg-K, thermal resistivity – 4.788 °C-m/W, thermal diffusivity – 0.089 mm2/s and Thermal conductivity – 0.209 W/m-K. The selected epoxy-IOT composite was numerically compared with an existing material (gypsum board) of the following thermal properties:  specific heat capacity – 1090 J/kg-K, thermal resistivity – 3.87°C-m/W, thermal diffusivity – 0.333 mm2/s and Thermal conductivity – 0.258 W/m-K. The numerical analysis was done using Autodesk Fusion360, by modelling the materials as slabs.The heat transfer process of the composite and the prediction of the heat resistance capability were explained by comparing the results with an existing material (gypsum plasterboard) using their mechanical and thermal properties.The numerical results indicated that the epoxy-IOT composite has lower minimum temperature and thermal stress compared with the existing material (gypsum board), which implies that epoxy-IOT composite when used as a heat insulator will resist heat and sustain thermal stress better than the gypsum board of the same geometry under the same conditions. In conclusion, an epoxy-IOT composite of appropriate mixing ratio and geometry can be comfortable use as heat resistant materials. Keywords— Epoxy-IOT, Numerical Analysis, Temperature Distribution, Thermal Performance, Thermal Stress


Designs ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Yihan Xing ◽  
Wenxin Xu ◽  
Valentina Buratti

This paper investigates the use of the Kriging response surface method to estimate failure values in carbon-fibre-epoxy composite flow-lines under the influence of stochastic processes. A case study of a 125 mm flow-line was investigated. The maximum stress, Tsai-Wu and Hashin failure criteria was used to assess the burst design under combined loading with axial forces, torsion and bending moments. An extensive set of measured values was generated using Monte Carlo simulation and used as the base case population to which the results from the response surfaces was compared. The response surfaces were evaluated in detail in their ability to reproduce the statistical moments, probability and cumulative distributions and failure values at low probabilities of failure. In addition, the optimisation of the response surface calculation was investigated in terms of reducing the number of input parameters and size of the response surface. Finally, a decision chart that can be used to build a response surface to calculate failures in a carbon fibre-epoxy-composite (CFEC) flow-line was proposed based on the findings obtained. The results show that the response surface method is suitable and can calculate failure values close to that calculated using a large set of measured values. The results from this paper provide an analytical framework for identifying the principal design parameters, response surface generation, and failure prediction for CFEC flow-lines.


Sign in / Sign up

Export Citation Format

Share Document