scholarly journals Spent Nuclear Fuel (SNF) Project Acceptance Criteria for Light Water Reactor Spent Fuel Storage System [OCRWM PER REV2]

2000 ◽  
Author(s):  
D.M. JOHNSON

2021 ◽  
Vol 20 ◽  
pp. 51-59
Author(s):  
О. R. Trofymenko ◽  
◽  
І. M. Romanenko ◽  
М. І. Holiuk ◽  
C. V. Hrytsiuk ◽  
...  

The management of spent nuclear fuel is one of the most pressing problems of Ukraine’s nuclear energy. To solve this problem, as well as to increase Ukraine’s energy independence, the construction of a centralized spent nuclear fuel storage facility is being completed in the Chornobyl exclusion zone, where the spent fuel of Khmelnytsky, Rivne and South Ukrainian nuclear power plants will be stored for the next 100 years. The technology of centralized storage of spent nuclear fuel is based on the storage of fuel assemblies in ventilated HI-STORM concrete containers manufactured by Holtec International. Long-term operation of a spent nuclear fuel storage facility requires a clear understanding of all processes (thermohydraulic, neutron-physical, aging processes, etc.) occurring in HI-STORM containers. And this cannot be achieved without modeling these processes using modern specialized programs. Modeling of neutron and photon transfer makes it possible to analyze the level of protective properties of the container against radiation, optimize the loading of MPC assemblies of different manufacturers and different levels of combustion and evaluate biological protection against neutron and gamma radiation. In the future it will allow to estimate the change in the isotopic composition of the materials of the container, which will be used for the management of aging processes at the centralized storage of spent nuclear fuel. The article is devoted to the development of the three-dimensional model of the HI-STORM storage system. The model was developed using the modern Monte Carlo code Serpent. The presented model consists of models of 31 spent fuel assemblies 438MT manufactured by TVEL company, model MPC-31 and model HISTORM 190. The model allows to perform a wide range of scientific tasks required in the operation of centralized storage of spent nuclear fuel.



Author(s):  
Jinhua Wang ◽  
Bing Wang ◽  
Bin Wu ◽  
Yue Li

There are more than 400 reactors in operation to generate electricity in the world, most of them are pressurized water reactors and boiling water reactors, which generate great amount of spent fuel every year. The residual heat power of the spent fuel just discharged from the reactor core is high, it is required to store the spent fuel in the spent fuel storage pool at the first 5 years after discharged from the reactor, and then the spent fuel could be moved to the interim storage facility for long term storage, or be moved to the factory for final treatment. In the accident of the Fukushima in 2011, the spent fuel pool ruptured, which led to the loss of coolant accident, it was very danger to the spent fuel assemblies stored in the pool. On the other hand, the spent fuel stored in the dry storage facility was safe in the whole process of earthquake and tsunami, which proved inherent safety of the spent fuel dry storage facility. In china, the High Temperature gas cooled Reactor (HTR) is developing for a long time in support of the government. At the first stage, HTR-10 with 10MW thermal power was designed and constructed in the Institute of Nuclear Energy Technology (INET) of Tsinghua University, and then the High Temperature Reactor-Pebble bed Modules (HTR-PM) is designed to meet the commercial application, which is in constructing process in Shandong Province. HTR has some features of the generation four nuclear power plant, including inherent safety, avoiding nuclear proliferation, could generate high temperature industrial heat, and so on. Spherical fuel elements would be used as fuel in HTR-PM, there are many coating fuel particles separated in the fuel element. As the fuel is different for the HTR and the PWR, the fuel element would be discharged into the appropriate spent fuel canister, and the canister would be stored in the appropriate interim storage facility. As the residual power density is very low for the spent fuel of HTR, the spent fuel canister could be cooled with air ventilation without water cooling process. The advantage of air cooling mode is that it is no need to consider the residual heat removal depravation due to loss of coolant accident, so as to increase the inherent safety of the spent fuel storage system. This paper introduced the design, arrangement and safety characteristics of the spent fuel storage well of HTR-PM. The spent fuel storage wells have enough capacity to hold the total spent fuel canisters for the HTR-PM. The spent fuel storage facility includes several storage wells, cold intake cabin, hot air discharge cabin, heat shield cylinders, well lids and so on. The cold intake cabin links the inlets of all the wells, which would be used to import cold air to every well. The hot air discharge cabin links the outlets of all the wells, which would be used to gather heated air discharged from every well, the heated air would be discharged to the atmosphere through the ventilating pipe at the top of the hot air cabin. The design of the spent fuel storage well and the ventilating pipe could discharge the residual heat of the spent fuel canisters in the storage wells, which could ensure the operating safety of the spent fuel storage system.





1985 ◽  
Vol 69 (1) ◽  
pp. 55-71 ◽  
Author(s):  
Robert E. Einziger ◽  
James A. Cook


1982 ◽  
Vol 58 (3) ◽  
pp. 437-446 ◽  
Author(s):  
Meyer Steinberg ◽  
James R. Powell ◽  
Hiroshi Takahashi


1989 ◽  
Author(s):  
L.E. Thomas ◽  
L.A. Charlot ◽  
J.E. Coleman ◽  
R.W. Knoll


Sign in / Sign up

Export Citation Format

Share Document