scholarly journals Competing degrees of freedom in nuclear structure theory. Final Report for 1999-2002

2003 ◽  
Author(s):  
Calvin W. Johnson





2021 ◽  
pp. 93-185
Author(s):  
Alexandre Obertelli ◽  
Hiroyuki Sagawa


1992 ◽  
Vol 01 (04) ◽  
pp. 809-821 ◽  
Author(s):  
BO-QIANG MA

The off-shell behaviors of bound nucleons in deep inelastic lepton nucleus scattering are discussed in two scenarios with the basic constituents chosen to be baryon-mesons and quark-gluons respectively in light-cone formalism. It is found that when taking into account the effect due to internal quark structure of nucleons, the derived scaling variable for bound nucleons and the calculated nuclear structure functions are different from those in considering the baryon-mesons as the effective elementary constituents. This implies that the pure baryon-meson descriptions of nuclei give the inaccurate off-shell behavior of the bound nucleon structure function, thereby the quark-gluons seem to be the most appropriate degrees of freedom for nuclear descriptions.



2010 ◽  
Vol 41 (7) ◽  
pp. 1127-1131 ◽  
Author(s):  
A. I. Vdovin ◽  
A. A. Dzhioev


1973 ◽  
Vol 296 (5) ◽  
pp. 371-373
Author(s):  
Clifford J Noble


2017 ◽  
Vol 26 (10) ◽  
pp. 1750063 ◽  
Author(s):  
Manjeet Singh Gautam

This work systematically analyzed the fusion dynamics of the projectile-target combinations involving stable and loosely bound systems within the view of the energy-dependent Woods–Saxon potential model (EDWSP model) and the coupled channel approach. The different projectiles are bombarded onto series of Sm-isotopes, which possess the dominance of the different kinds of the nuclear structure degrees of freedom and with the increase of the neutron richness, the Sm-isotopes gradually shift from spherical shape to a statically deformed shape. In the fusion of [Formula: see text] reaction, the impacts of vibrational degrees of freedom of the colliding nuclei are dominant while in the case of [Formula: see text] systems, the rotational states of the deformed target isotopes have a strong impression on the below-barrier fusion data. The heavier target isotopes ([Formula: see text] also exhibit the higher order deformation such as [Formula: see text], [Formula: see text]-deformation parameter in its ground state and couplings to such channels must be incorporated in theoretical calculations in order to achieve close agreement with the sub-barrier fusion data. However, in the case of the loosely bound systems, the projectile breakup channel significantly affects the fusion excitation functions in the domain of the Coulomb barrier. To ensure the role of the projectile breakup channel, the fusion of the different loosely bound projectiles ([Formula: see text] and [Formula: see text] with Sm-isotopes are investigated, wherein the above-barrier fusion data of these reactions are suppressed with reference to the coupled channel calculations. This hindrance is the result of the projectile breakup effects that occur as a consequence of the breakup of the projectile before reaching the fusion barrier due to its low binding energy. However, in the EDWSP model calculations the magnitude of the hindrance of the above-barrier fusion data of [Formula: see text] and [Formula: see text] reactions is reduced by a factor varying from 7% to 13% with respect to a value reported in the literature. In contrast to this, the sub-barrier fusion enhancement of [Formula: see text] and [Formula: see text] reactions is the result of the dominance of the nuclear structure degrees of freedom of the colliding systems.



1989 ◽  
Vol 04 (09) ◽  
pp. 2063-2146 ◽  
Author(s):  
K. HEYDE

In the present review, an attempt is made to approach the different facets of the nucleus at low excitation energy from both a microscopic, self-consistent and a collective model approach. Some attention is given on how to relate the two “opposite” approaches to nuclear structure. In a final chapter, we discuss some newly appreciated modes in the nucleus that are specific to the proton and neutron degrees of freedom e.g. the study of intruder states near closed shells and the presence of proton-neutron mixed-symmetry collective motion.



2010 ◽  
Vol 25 (21n23) ◽  
pp. 1787-1791
Author(s):  
MICHAEL BENDER ◽  
PAUL-HENRI HEENEN

This contribution sketches recent efforts to explicitly include fluctuations in collective degrees of freedom into a universal energy density functional method for nuclear structure, their successes, and some remaining open questions.



Sign in / Sign up

Export Citation Format

Share Document