scholarly journals Death Valley Lower Carbonate Aquifer Monitoring Program Wells Down Gradient of the Proposed Yucca Mountain Nuclear Waste Repository, U. S. Department of Energy Grant DE-RW0000233 2010 Project Report, prepared by The Hydrodynamics Group, LLC for Inyo County Yucca Mountain Repository Assessment Office

2010 ◽  
Author(s):  
Michael King ◽  
Bredehoeft, John D., Dr.
1993 ◽  
Vol 333 ◽  
Author(s):  
Kenneth J. Jackson ◽  
Susan A. Carroll

It is thought that a significant amount of diesel fuel and other hydrocarbon-rich phases may remain inside the candidate nuclear waste repository at Yucca Mountain after construction and subsequent emplacement of radioactive waste. Although the proposed repository horizon is above the water table, the remnant hydrocarbon phases may react with hydrothermal solutions generated by high temperature conditions that will prevail for a period of time in the repository. The preliminary experimental results of this study show that diesel fuel hydrous pyrolysis is minimal at 200°C and 70 bars. The composition of the diesel fuel remained constant throughout the experiment and the concentration of carboxylic acids in the aqueous phases was only slightly above the detection limit (1–2 ppm) of the analytical technique.


1983 ◽  
Vol 26 ◽  
Author(s):  
L. D. Tyler ◽  
R. R. Peters ◽  
N. K. Hayden ◽  
J. K. Johnstone ◽  
S. Sinnock

ABSTRACTThe Nevada Nuclear Waste Storage Investigations (NNWSI) project includes a Performance Assessment task to evaluate the containment and isolation potential for a nuclear waste repository at Yucca Mountain in southern Nevada. This task includes calculations of the rates and concentrations at which radionuclides might be released and transported from the repository and will predict their consequences if they enter the human environment. Among the major tasks required for these calculations will be the development of models for water flow and nuclide transport under unsaturated conditions and in fractured hard rock. The program must also quantify the uncertainties associated with the results of the calculations. The performance assessment will provide evaluations needed for making major decisions as the U. S. Department of Energy seeks a site for a repository. An evaluation will be part of the environmental assessments prepared to accompany the potential nomination of the site. If the Yucca mountain site is selected for characterization and development as a repository, the assessments will be required for an environmental impact statement, a safety analysis report, and other documents.This program has been divided into five tasks. Collectively they will provide the performance assessments needed for the NNWSI Project.


IEEE Spectrum ◽  
2002 ◽  
Vol 39 (2) ◽  
pp. 28-28
Author(s):  
David P. Amber ◽  
Willie D. Jones

1983 ◽  
Vol 26 ◽  
Author(s):  
Schon S. Levy

ABSTRACTNuclear waste emplacement in devitrified volcanic tuff at Yucca Mountain will raise the temperature of surrounding rock for a geologically significant period of time. This study evaluates the susceptibility of an underlying 50 ft-thick vitrophyre to thermal alteration by examining alteration that occurred in the rock as it cooled after deposition. A 10°C temperature rise should have no mineralogical effects on the vitrophyre, but an increase of 60° or more is likely to result in alteration. Expected mineralogic changes in the vitrophyre caused by this amount of thermal loading include crystallization of zeolites and smectite. Alteration will be concentrated in a thin interval near the top of the vitrophyre and along fractures. Adsorbed water and water in preexisting hydrous minerals and in glass may contribute to hydrothermal alteration of underlying vitrophyre. Bulk porosity change would be slight and local porosity increase would probably be restricted to the upper part of the vitrophyre. Although some fracture filling could occur, such a minor sealing effect would be balanced by development of secondary porosity. Zeolites and smectite, newly-crystallized along fluid flow paths below the waste repository, could provide an enhanced sorptive barrier to radionuclide migration.


Sign in / Sign up

Export Citation Format

Share Document