adsorbed water
Recently Published Documents


TOTAL DOCUMENTS

858
(FIVE YEARS 150)

H-INDEX

59
(FIVE YEARS 6)

2022 ◽  
Vol 216 ◽  
pp. 106338
Author(s):  
Nadine J. Kanik ◽  
Fred J. Longstaffe ◽  
Artur Kuligiewicz ◽  
Arkadiusz Derkowski

Surface ◽  
2021 ◽  
Vol 13(28) ◽  
pp. 94-126
Author(s):  
V. V. Turov ◽  
◽  
V. M. Gun'ko ◽  
T. V. Krupska ◽  
◽  
...  

The methane adsorption onto a hydrated surface of hydrophobic silica AM1 alone and impregnated by arginine, and silica gel Si-100 has been studied using low-temperature 1H NMR spectroscopy. It has been shown that the methane adsorption onto the AM1 surface depends on the degree of hydration and pretreatment type. The maximum adsorption (up to 80 mg/g) is observed for a sample hydrated after complete drying. It has been established that the adsorption is determined by a number of clusters of bound water of small radii. Based on a shape of the temperature dependence of the adsorption, it has been assumed that not only physical adsorption occurs, but also the quasi-solid methane hydrates are formed. It has been established that the amount of methane adsorbed onto a surface of a composite system AM1/arginine under isobaric conditions increases by tens of times (from 0.5 to 80 mg/g) in the presence of pre-adsorbed water pre-adsorbed at the surface. Probable mechanisms of the methane adsorption are physical adsorption on a surface, condensation in narrow voids between silica nanoparticles and nano-scaled (1-10 nm) water clusters, and the formation of solid (clathrate) methane hydrates. Water, adsorbed at a surface in a wide range of hydration, forms various clusters. This water is mainly strongly associated and characterized by chemical shifts in the range dH = 4-6 ppm. The hydrate structures with methane/water are quite stable and can exist even in the chloroform medium. However, in this case, a part of water transforms into a weakly associated state and it is observed at dH = 1.5-2 ppm.


Surface ◽  
2021 ◽  
Vol 13(28) ◽  
pp. 246-275
Author(s):  
V. V. Turov ◽  
◽  
P. P. Gorbyk ◽  
T. V. Krupska ◽  
S. P. Turanska ◽  
...  

Composite systems with certain cytotoxic (AM1/lectin) and adsorption (AM1/gelatin) activity have been developed on the basis of methyl silica and protein molecules – lectin and gelatin. For both types of composites, mechanisms of water binding to the surface and methods of transferring of hydrophobic materials into the aquatic environment have been investigated. The state of interfacial water in air, organic and acid media was studied. It has been found that the presence of a hydrophobic component in composites stabilizes of surface water in a weakly associated state, when a significant part of water molecules does not form hydrogen bonds. Liquid hydrophobic medium enhances this effect, and the strong acid (trifluoroacetic), added to it, promotes the transition of water to a strongly associated state. It has been shown that the redistribution of water in the interparticle intervals of AM1 with protein molecules immobilized on their surface changes under the influence of mechanical loads. Mechanoactivated samples are characterized by the possibility of water penetration into the spaces between the primary particles of methyl silica. It has been shown that immobilization of lectin on the surface of AM1 is accompanied by an increase in the interfacial energy gS from 4.1 to 5.2 J/g. This is due to an increase in the concentration of strongly bound water. If we analyze the changes in the distributions of radii R of the clusters of adsorbed water, we can state that in the water adsorbed by native lectin molecules, there are two main maxima at R = 1 and 3 nm. In the immobilized state, the maximum at R = 1 nm is present in both types of water (of different order), but the second maximum is observed only for more ordered associates.


ACS Catalysis ◽  
2021 ◽  
pp. 789-798
Author(s):  
Kingsley C. Chukwu ◽  
Líney Árnadóttir
Keyword(s):  

Author(s):  
Deinhofer Lukas ◽  
Maurer Michael ◽  
Barnstedt Gert ◽  
Keber Andreas

AbstractSelective catalytic reduction (SCR) systems are the state-of-the-art technology to reduce nitrogen oxide emissions (NOx) of modern diesel engines. The system behaviour is well understood in the common temperature working area. However, the system properties below light-off temperature are less well known and offer a wide scope for further investigations. Vehicle measurements show that under specific conditions during cold start, NOx can be partially stored and converted on on-filter and flow-through SCR catalysts. The purpose of this work was in a first step to analyse the main influence parameters on the NOx storage behaviour. Therefore, synthetic gas test bench measurements have been carried out, varying the gas concentrations, temperature, and gas hourly space velocity (GHSV). These investigations showed that the NOx storage effect strongly depends on the NH3 level stored in the catalyst, GHSV, the adsorbed water (H2O) on the catalyst, and the temperature of the catalyst. Further influence parameters such as the gas composition with focus on carbon monoxide (CO), short-chain hydrocarbons and long-chain hydrocarbons have been analysed on a synthetic gas test bench. Depending on operating conditions, a significant amount of NOx can be stored on a dry catalyst during the cold start phase. The water vapor from the combustion condenses on the cold exhaust pipe during the first seconds, or up to a few minutes after a cold start. As the water vapor reaches the surface of the catalyst, it condenses and adsorbs onto it, leading to a sudden temperature rise. This exothermal reaction causes the stored NOx to be desorbed, and furthermore it is partially reduced by the NH3 stored in the catalyst.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3132
Author(s):  
Jiarong Wang ◽  
Yangyue Ding ◽  
Mingyang Wang ◽  
Tianqi Cui ◽  
Zeyu Peng ◽  
...  

The effects of NaCl (1–3%) and kansui (0.5–1.5%) on the quality of frozen cooked noodles (FCNs) were investigated, which provided a reference for alleviating the quality deterioration of FCNs. Textural testing illustrated that the optimal tensile properties were observed in 2% NaCl (N-2) and the maximum hardness and chewiness were reached at 1% kansui (K-1). Compared to NaCl, the water absorption and cooking loss of recooked FCNs increased significantly with increasing kansui levels (p < 0.05). Rheological results confirmed NaCl and kansui improved the resistance to deformation and recovery ability of thawed dough; K-1 especially had the highest dough strength. SEM showed N-2 induced a more elongated fibrous protein network that contributed to the extensibility, while excessive levels of kansui formed a deformed membrane-like gluten network that increased the solid loss. Moisture analysis revealed that N-2 reduced the free water content, while K-1 had the lowest freezable water content and highest binding capacity for deeply adsorbed water. The N-2 and K-1 induced more ordered protein secondary structures with stronger intermolecular disulfide bonds, which were maximally improved in K-1. This study provides more comprehensive theories for the strengthening effect of NaCl and kansui on FCNs quality.


2021 ◽  
Author(s):  
Matouš Kloda ◽  
Tomáš Plecháček ◽  
Soňa Ondrušová ◽  
Petr Brázda ◽  
Petr Chalupský ◽  
...  

Metal organic frameworks (MOFs) are attracting attention as potential proton conductors. There are two main advantages of MOFs in this application: the possibility of rational design and tuning of the properties, and clear conduction pathways given by their crystalline structure. We hereby present two new MOF structures, ICR-10 and ICR-11, based on tetratopic phosphinate ligands. The structures of both MOFs were determined by 3D electron diffraction. They both crystallize in the P-3 space group and contain arrays of parallel linear pores lined with hydrophilic non-coordinated phosphinate groups. This, together with the adsorbed water molecules, facilitates proton transfer via the Grotthuss mechanism, leading to the proton conductivity up to 4.26∙10-4 S cm-1 for ICR-11.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1434
Author(s):  
Indri Badria Adilina ◽  
Robert Ronal Widjaya ◽  
Luthfiana Nurul Hidayati ◽  
Edi Supriadi ◽  
Muhammad Safaat ◽  
...  

Biochar (BCR) was obtained from the pyrolysis of a palm-oil-empty fruit bunch at 773 K for 2 h and used as a catalyst for the hydrodeoxygenation (HDO) of guaiacol (GUA) as a bio-oil model compound. Brunauer–Emmet–Teller surface area analysis, NH3 and CO2-temperature-programmed desorption, scanning electron microscope–dispersive X-ray spectroscopy, CHN analysis and X-ray fluorescence spectroscopy suggested that macroporous and mesoporous structures were formed in BCR with a co-presence of hydrophilic and hydrophobic sites and acid–base behavior. A combination of infrared, Raman and inelastic neutron scattering (INS) was carried out to achieve a complete vibrational assignment of BCR. The CH–OH ratio in BCR is ~5, showing that the hydroxyl functional groups are a minority species. There was no evidence for any aromatic C–H stretch modes in the infrared, but they are clearly seen in the INS and are the majority species, with a ratio of sp3–CH:sp2–CH of 1:1.3. The hydrogen bound to sp2–C is largely present as isolated C–H bonds, rather than adjacent C–H bonds. The Raman spectrum shows the characteristic G band (ideal graphitic lattice) and three D bands (disordered graphitic lattice, amorphous carbon, and defective graphitic lattice) of sp2 carbons. Adsorbed water in BCR is present as disordered layers on the surface rather than trapped in voids in the material and could be removed easily by drying prior to catalysis. Catalytic testing demonstrated that BCR was able to catalyze the HDO of GUA, yielding phenol and cresols as the major products. Phenol was produced both from the direct demethoxylation of GUA, as well as through the demethylation pathway via the formation of catechol as the intermediate followed by deoxygenation.


Algorithms ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 340
Author(s):  
Tom Burr ◽  
Ian Schwerdt ◽  
Kari Sentz ◽  
Luther McDonald ◽  
Marianne Wilkerson

A major goal in pre-detonation nuclear forensics is to infer the processing conditions and/or facility type that produced radiological material. This review paper focuses on analyses of particle size, shape, texture (“morphology”) signatures that could provide information on the provenance of interdicted materials. For example, uranium ore concentrates (UOC or yellowcake) include ammonium diuranate (ADU), ammonium uranyl carbonate (AUC), sodium diuranate (SDU), magnesium diuranate (MDU), and others, each prepared using different salts to precipitate U from solution. Once precipitated, UOCs are often dried and calcined to remove adsorbed water. The products can be allowed to react further, forming uranium oxides UO3, U3O8, or UO2 powders, whose surface morphology can be indicative of precipitation and/or calcination conditions used in their production. This review paper describes statistical issues and approaches in using quantitative analyses of measurements such as particle size and shape to infer production conditions. Statistical topics include multivariate T tests (Hotelling’s ), design of experiments, and several machine learning (ML) options including decision trees, learning vector quantization neural networks, mixture discriminant analysis, and approximate Bayesian computation (ABC). ABC is emphasized as an attractive option to include the effects of model uncertainty in the selected and fitted forward model used for inferring processing conditions.


Sign in / Sign up

Export Citation Format

Share Document