Study on the Development of a Cyclohexane Based Tripodal Molecular Device as "OFF-ON-OFF" pH Sensor and Fluorescent Iron Sensor

2020 ◽  
Vol 16 (5) ◽  
pp. 620-630 ◽  
Author(s):  
Vijay Dangi ◽  
Minati Baral ◽  
B.K. Kanungo

Background: Iron is an essential transition metal which is indispensable for life processes like oxygen transport and metabolism, electron transfer etc. However, misregulated iron is responsible for disease like anemia, hemochromatosis, Alzheimer’s and Parkinson’s disease. In order to encounter these diseases, a better understanding is needed of its role in misregulation. Fluorescent iron sensors could help provide this information. The new chemosensor developed by linking a cyclohexane unit with three 8-hydroxyquinoline provides selective detection of iron in numerous biological and environmental samples. Methods: The Uv-visible and fluorescence spectroscopy in combination with pH measurements will mainly be used for the study. Theoretical studies at DFT level will be used to validate the method and explain the theory behind the experiments. Results: The study of electronic spectra of the chelator, HQCC, reveals the appearance of a band at 262 nm along with a weak band at 335 nm due to π- π* and n- π* transitions respectively. Upon excitation with 335 nm, the ligand fluoresces at 388 nm wavelength. The intensity of the emission was affected in presence of metal ions, with maximum deviation for Fe(III). Selectivity studies showed that Fe(III) is more selective as compared to the biologically relevant metal ions viz., Al(III), Fe(III), Cr(III), Co(II), Fe(II), Ni(II), Zn(II), Cu(II), Mn(II) and Pb(II). pH dependent studies implied that the fluorescence intensity was highest at pH ~8.0, whereas maximum quenching for iron-HQCC system was observed at pH 7.4. The binding studies from the B-H plot confirms the formation of 1:1 complex with association constant of 5.95 × 106. The results obtained from experiments were in agreement with that obtained from the DFT and TD-DFT studies. Conclusion: A novel tripodal chelator based on 8-hydroxyquinoline and symmetric cyclohexane scaffold was successfully developed. In addition to the excellence of the ligand to be employed as a promising sensitive fluorescent probe for easy detection of Fe3+ions at the physiological pH with very low concentration (7.5 x 10-5 molL-1), the new ligand can be used as an OFF-ON-OFF pH sensor. Fe(III) encapsulation along with 1:1 ML-complexation formation have been established. Theoretical studies confirm a d-PET mechanism for the fluorescence quenching. DFT studies revealed that the neutral form of the ligand is less reactive than its protonated or the deprotonated form.

2021 ◽  
Vol 99 (7) ◽  
pp. 628-636
Author(s):  
Camilla Golec ◽  
Jose O. Esteves-Villanueva ◽  
Sanela Martic

Metal ion dyshomeostasis plays an important role in diseases, including neurodegeneration. Tau protein is a known neurodegeneration biomarker, but its interactions with biologically relevant metal ions, such as Cu(II), are not fully understood. Herein, the Cu(II) complexes of four tau R peptides, based on the tau repeat domains, R1, R2, R3, and R4, were characterized by electrochemical methods, including cyclic voltammetry, square-wave voltammetry, and differential pulse voltammetry in solution under aerobic conditions. The current and potential associated with Cu(II)/(I) redox couple was modulated as a function of R peptide sequence and concentration. All R peptides coordinated Cu(II) resulting in a dramatic decrease in the current associated with free Cu(II), and the appearance of a new redox couple due to metallo–peptide complex. The metallo–peptide complexes were characterized by the irreversible redox couple at more positive potentials and slower electron-transfer rates compared with the free Cu(II). The competition binding studies between R peptides with Cu(II) indicated that the strongest binding affinity was observed for the R3 peptide, which contained 2 His and 1 Cys residues. The formation of complexes was also evaluated as a function of peptide concentration and in the presence of competing Zn(II) ions. Data indicate that all metallo–peptides remain redox active pointing to the potential importance of the interactions between tau protein with metal ions in a biological setting.


RSC Advances ◽  
2016 ◽  
Vol 6 (91) ◽  
pp. 88010-88029 ◽  
Author(s):  
Gunjan Agarwal ◽  
Dipali N. Lande ◽  
Debamitra Chakrovarty ◽  
Shridhar P. Gejji ◽  
Prajakta Gosavi-Mirkute ◽  
...  

Bromine substituted aminonaphthoquinones – chemosensors for metal ions.


2015 ◽  
Vol 16 (4) ◽  
pp. 809-818 ◽  
Author(s):  
Amol S. Choudhary ◽  
Sharad Patil ◽  
Nagaiyan Sekar

2021 ◽  
Vol 134 ◽  
pp. 106036
Author(s):  
Shamsa Bibi ◽  
Faiza Farooq ◽  
Shafiq-ur-Rehman ◽  
Fu Quan Bai ◽  
Hong-Xing Zhang

Author(s):  
Mohammed Ashraf Uddin ◽  
Bupasha Hekim Sutonu ◽  
Malik Abdul Rub ◽  
Shamim Mahbub ◽  
Maha Moteb Alotaibi ◽  
...  

2019 ◽  
Vol 1178 ◽  
pp. 570-582 ◽  
Author(s):  
Mohammad Jane Alam ◽  
Azhar U. Khan ◽  
Mahboob Alam ◽  
Shabbir Ahmad
Keyword(s):  
1H Nmr ◽  
Td Dft ◽  

Sign in / Sign up

Export Citation Format

Share Document