Network Selection in Wireless Heterogeneous Environment Based on Available Bandwidth Estimation

Author(s):  
Kiran Ahuja ◽  
Brahmjit Singh ◽  
Rajesh Khanna

Background: With the availability of multiple options in wireless network simultaneously, Always Best Connected (ABC) requires dynamic selection of the best network and access technologies. Objective: In this paper, a novel dynamic access network selection algorithm based on the real time is proposed. The available bandwidth (ABW) of each network is required to be estimated to solve the network selection problem. Method: Proposed algorithm estimates available bandwidth by taking averages, peaks, low points and bootstrap approximation for network selection. It monitors real-time internet connection and resolves the selection issue in internet connection. The proposed algorithm is capable of adapting to prevailing network conditions in heterogeneous environment of 2G, 3G and WLAN networks without user intervention. It is implemented in temporal and spatial domains to check its robustness. Estimation error, overhead, estimation time with the varying size of traffic and reliability are used as the performance metrics. Results: Through numerical results, it is shown that the proposed algorithm’s ABW estimation based on bootstrap approximation gives improved performance in terms of estimation error (less than 20%), overhead (varies from 0.03% to 83%) and reliability (approx. 99%) with respect to existing techniques. Conclusion: Our proposed methodology of network selection criterion estimates the available bandwidth by taking averages, peaks, and low points and bootstrap approximation method (standard deviation) for the selection of network in the wireless heterogeneous environment. It monitors real-time internet connection and resolves internet connections selection issue. All the real-time usage and test results demonstrate the productivity and adequacy of available bandwidth estimation with bootstrap approximation as a practical solution for consistent correspondence among heterogeneous wireless networks by precise network selection for multimedia services.

2012 ◽  
Vol 35 (2) ◽  
pp. 731-742 ◽  
Author(s):  
Mahboobeh Sedighizad ◽  
Babak Seyfe ◽  
Keivan Navaie

2009 ◽  
Vol 53 (15) ◽  
pp. 2617-2645 ◽  
Author(s):  
Erik Bergfeldt ◽  
Svante Ekelin ◽  
Johan M. Karlsson

2018 ◽  
Vol 208 ◽  
pp. 02001 ◽  
Author(s):  
Veronika Kirova ◽  
Eduard Siemens ◽  
Dmitry Kachan ◽  
Oksana Vasylenko ◽  
Kirill Karpov

Available bandwidth parameter is a crucial characteristic in terms of networking and data transmission. The beforehand knowledge of its value and use of this parameter in various traffic engineering algorithms and QoS calculations is a key for high-efficient multigigabit data transport in nowadays networks. The challenge in available bandwidth estimations is not only in its accuracy and processing speed but also in the reduction of the amount of probe traffic injected into the network by keeping an adequate level of estimation accuracy. In this paper we extend existing active probing measurement algorithms for end-to-end available bandwidth estimation along with methods to reduce estimation times and amount of injected traffic while keeping measurement accuracy constant and even reducing the uncertainty of estimations. The main goal of this research was to detect a sufficient ratio of MTU, packet train size with the link capacity and available bandwidth (AvB) in up to 10 Gbps networks. In order to explore measurement accuracy under different conditions, a new tool for the AvB estimation named Kite2 has been developed and is presented in the paper. Comparative performance of AvB estimations using Kite2, Kite and Yaz is presented. Finally we calculate with statistical means dependency between the estimation error probability, measurement probing overhead and the measurement time.


Sign in / Sign up

Export Citation Format

Share Document