Double-exponential inseparability of Robinson subsystem Q+

2011 ◽  
Vol 76 (1) ◽  
pp. 94-124
Author(s):  
Lavinia Egidi ◽  
Giovanni Faglia

AbstractIn this work a double exponential time inseparability result is proven for a finitely axiomatizable first order theory Q+. The theory, subset of Presburger theory of addition S+, is the additive fragment of Robinson system Q. We prove that every set that separates Q+ from the logically false sentences of addition is not recognizable by any Turing machine working in double exponential time. The lower bound is given both in the non-deterministic and in the linear alternating time models.The result implies also that any theory of addition that is consistent with Q+—in particular any theory contained in S+—is at least double exponential time difficult. Our inseparability result is an improvement on the known lower bounds for arithmetic theories.Our proof uses a refinement and adaptation of the technique that Fischer and Rabin used to prove the difficulty of S+. Our version of the technique can be applied to any incomplete finitely axiomatizable system in which all of the necessary properties of addition are provable.

2005 ◽  
Vol 70 (4) ◽  
pp. 1072-1086 ◽  
Author(s):  
Martin Lange ◽  
Carsten Lutz

AbstractIn 1984. Danecki proved that satisfiability in IPDL, i.e., Propositional Dynamic Logic (PDL) extended with an intersection operator on programs, is decidabie in deterministic double exponential time. Since then, the exact complexity of IPDL has remained an open problem: the best known lower bound was the ExpTime one stemming from plain PDL until, in 2004. the first author established ExpSpace-hardness. In this paper, we finally close the gap and prove that IPDL is hard for 2-ExpTime. thus 2-ExpTime-complete. We then sharpen our lower bound, showing that it even applies to IPDL without the test operator interpreted on tree structures.


Computability ◽  
2019 ◽  
Vol 8 (3-4) ◽  
pp. 347-358
Author(s):  
Matthew Harrison-Trainor

2015 ◽  
Vol 57 (2) ◽  
pp. 157-185 ◽  
Author(s):  
Peter Franek ◽  
Stefan Ratschan ◽  
Piotr Zgliczynski

1990 ◽  
Vol 55 (2) ◽  
pp. 626-636
Author(s):  
John T. Baldwin

AbstractLet T be a complete countable first order theory and λ an uncountable cardinal. Theorem 1. If T is not superstable, T has 2λ resplendent models of power λ. Theorem 2. If T is strictly superstable, then T has at least min(2λ, ℶ2) resplendent models of power λ. Theorem 3. If T is not superstable or is small and strictly superstable, then every resplendent homogeneous model of T is saturated. Theorem 4 (with Knight). For each μ ∈ ω ∪ {ω, 2ω} there is a recursive theory in a finite language which has μ resplendent models of power κ for every infinite κ.


Sign in / Sign up

Export Citation Format

Share Document