La Tierra y su biosfera están cambiando constantemente, por lo tanto, es fundamental detectar los cambios con el fin de entender su impacto en los ecosistemas terrestres. Los esquemas de monitoreo de ecosistemas han evolucionado rápidamente en las ultimas décadas. En el caso del monitoreo forestal, los métodos y herramientas que facilitan la utilización de imágenes satelitales permiten realizar este monitoreo con el cual se puede detectar donde y cuando un bosque es eliminado o afectado debido a un evento de deforestación o bien de fuego, lo anterior casi en tiempo real. Estas nuevas herramientas están disponibles para su implementación, sin embargo, ningún paı́s de la región centroamericana y el Caribe ha implementado un sistema como herramienta de decisión dentro de una estructura de gobierno central o federal debido a la ausencia de programas de transferencia de tecnologı́a o programas de capacitación de talento local.
Los sensores remotos proporcionan mediciones consistentes y repetibles que permiten la captura de los efectos de muchos procesos que causan el cambio, incluyendo, por ejemplo, incendios, ataques de insectos, agentes de cambio naturales y antropogénicas como por ejemplo, la deforestación, la urbanización, la agricultura, etc. Las series temporales de imágenes de satélite proporcionan maneras para detectar y vigilar cambios en el tiempo y en el espacio, esto consistentemente durante los últimos 30 años a nivel mundial.
Los incendios forestales afectan el proceso de sucesión del bosque, no obstante, es muy limitada la existencia de estudios locales que relacionen el efecto de los incendios forestales con las diferencias en la información espectral a partir de sensoramiento remoto.
En el presente estudio se plantea y propone la utilización y aprovechamiento de lo que se ha denominado grandes datos, especialmente con el advenimiento muchas plataformas de sensores remotos como Landsat, MODIS y recientemente Sentinel, para identificar cuál es el efecto de los incendios forestales en la sucesión y sus elementos perturbadores, como por ejemplo, la presencia de lianas. Se procesaron las series temporales se usó la plataforma digital Google Earth Engine, que permitió la selección y reducción de la información espacial de los ı́ndices de vegetación en tendencia, estacionalidad y residuos. Se analizó la respuesta de estos ı́ndices en sitios con diferente afectación por incendios forestales. Con estos índices se pretende desarrollar modelos de clasificación de series espaciales de tiempo de los ı́ndices y poder ası́ comprender los cambios en el tiempo y el espacio de los ecosistemas afectados por incendios forestales. Preliminarmente, se encontró una relación entre la incidencia de los incendios forestales y el fenómeno del Niño-Oscilación del Sur para el índice de vegetación denominado índice de área foliar. Además, la evidencia indica que el índice normalizado de vegetación si presenta diferencias respecto a los sitios que tienen un historial de fuegos diferente.
El establecer esta relación implica estudiar también los regı́menes de precipitación y temperatura. El descomponer las series de tiempo facilitó la correlación con otras series de tiempo, permitiendo establecer las bases de un monitoreo y a su vez, relacionar las índices de vegetación y su variación con otros elementos climáticos, como por ejemplo, el efecto ENOS.