scholarly journals Development of 3D cartoon by using B-spline and sweep surface method

2017 ◽  
Vol 4 (12) ◽  
pp. 158-161
Author(s):  
et al. Sukri ◽  
2002 ◽  
Vol 46 (02) ◽  
pp. 138-147
Author(s):  
Po-Fan Chen ◽  
Cheng-Hung Huang

An inverse hull design problem for optimizing the shape of the after hull based on the desired wake distribution is solved using the Levenberg-Marquardt Method (LMM) and the commercial code SHIPFLOW. The desired wake distribution on a propeller plane can be obtained by modifying the existing wake distribution of the parent ship. The surface geometry of the ship is generated using the B-spline surface method, which enables the shape of the hull to be completely specified with only a small number of parameters (i.e., the control points). The advantage of calling SHIPFLOW as a subroutine in the present inverse calculation lies in that many difficult but practical hydrodynamic problems regarding ship design can be solved under this construction. The validity of the present 3-D inverse hull design problem for the after hull of a ship is justified based on the numerical experiments. Results show that optimal hull form can always be obtained based on the required wake distributions.


2021 ◽  
Vol 2084 (1) ◽  
pp. 012018
Author(s):  
Nursyazni Binti Mohamad Sukri ◽  
Puteri Ainna Husna Binti Megat Mohd ◽  
Siti Musliha Binti Nor-Al-Din ◽  
Noor Khairiah Binti Razali

Abstract In Computer Aided Geometry Design (CAGD), B-splines curves are piecewise polynomial parametric curves that play an important role. CAGD involves the interpolation and approximation curves and surfaces. CAGD has been widely used which brings good impact of computers to industries in manufacturing. There are many improved methods in the B-spline curve such as extended cubic B-spline, trigonometric B-spline, quasi trigonometric B-spline, and λμ-B-spline. Each of the methods has its behaviour and advantage. In this paper, λμ-B-spline was used to be implemented in generating irregular symmetrical objects. λμ-B-spline has a shape parameter that can change the global shape by manipulating the value of the shape parameter. The bottle has been chosen as an irregular symmetrical object. The 2-dimensional symmetrical curves of Bottle design were formed by using λμ-B-spline degree 4. The curves designed are dependent on the shape parameter which can be adjusted. Then, the curves generated were revolved using the Sweep Surface method to form 3-dimensional objects. Every object has its volume and this research focused on the numerical method which was Simpson’s 3/8 to compute the volume. The volumes obtained were compared to the actual volume to determine the best shape parameter used. The results show that the λμ-B-spline curve with a shape parameter of 1 is the best shape parameter in designing symmetrical irregular objects with the desired volume.


2014 ◽  
Vol 134 (9) ◽  
pp. 1293-1298
Author(s):  
Toshiya Kaihara ◽  
Nobutada Fuji ◽  
Tomomi Nonaka ◽  
Yuma Tomoi

2017 ◽  
Vol 61 (3) ◽  
pp. 305031-3050311 ◽  
Author(s):  
Timo Eckhard ◽  
Jia Eckhard ◽  
Eva M. Valero ◽  
Javier Hernández-Andrés
Keyword(s):  
B Spline ◽  

2017 ◽  
Vol 5 (3) ◽  
pp. 15
Author(s):  
GANDOTRA SANDEEP ◽  
Pungotra Harish ◽  
Moudgil Prince Kumar ◽  
◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document