scholarly journals Ограничение допустимой коэрцитивной силы, вызванное полем рассеяния магнита

2019 ◽  
Vol 89 (7) ◽  
pp. 1055
Author(s):  
Н.С. Моисеева ◽  
И.И. Резчикова ◽  
Д.В. Королев ◽  
Р.Б. Моргунов ◽  
В.П. Пискорский

AbstractIt is shown that the shape of a sample determines the allowed lower-bound limit of the coercive force of material that can be used for fabrication of magnets with the given shape. Rings with radial magnetization are used as examples to show that such samples can be made of only rare-earth alloys with the coercive force that is sufficiently high to satisfy technical requirements at the maximum allowed working temperature of the magnet.


1994 ◽  
Vol 04 (C5) ◽  
pp. C5-705-C5-708
Author(s):  
V. PREOBRAZHENSKY ◽  
I. DUBENKO ◽  
N. ECONOMOV ◽  
A. ZAIKIN


1980 ◽  
Vol 58 (5) ◽  
pp. 629-632 ◽  
Author(s):  
H. Hernandez ◽  
R. Ferrer ◽  
M. J. Zuckermann

We discuss the influence of non-axial electric field gradients on the ordered state of amorphous ferromagnetic alloys containing rare-earth atoms.







1971 ◽  
Vol 32 (6) ◽  
pp. 1205-1209 ◽  
Author(s):  
C.L. Foiles
Keyword(s):  


Author(s):  
Zangi Sultan ◽  
Jiansheng Wu ◽  
Cong-Feng Qiao

Abstract Detection and quantification of entanglement are extremely important in quantum information theory. We can extract information by using the spectrum or singular values of the density operator. The correlation matrix norm deals with the concept of quantum entanglement in a mathematically natural way. In this work, we use Ky Fan norm of the Bloch matrix to investigate the disentanglement of quantum states. Our separability criterion not only unifies some well-known criteria but also leads to a better lower bound on concurrence. We explain with an example how the entanglement of the given state is missed by existing criteria but can be detected by our criterion. The proposed lower bound on concurrence also has advantages over some investigated bounds.



2021 ◽  
Vol 12 (3) ◽  
pp. 150-156
Author(s):  
A. V. Galatenko ◽  
◽  
V. A. Kuzovikhina ◽  

We propose an automata model of computer system security. A system is represented by a finite automaton with states partitioned into two subsets: "secure" and "insecure". System functioning is secure if the number of consecutive insecure states is not greater than some nonnegative integer k. This definition allows one to formally reflect responsiveness to security breaches. The number of all input sequences that preserve security for the given value of k is referred to as a k-secure language. We prove that if a language is k-secure for some natural and automaton V, then it is also k-secure for any 0 < k < k and some automaton V = V (k). Reduction of the value of k is performed at the cost of amplification of the number of states. On the other hand, for any non-negative integer k there exists a k-secure language that is not k"-secure for any natural k" > k. The problem of reconstruction of a k-secure language using a conditional experiment is split into two subcases. If the cardinality of an input alphabet is bound by some constant, then the order of Shannon function of experiment complexity is the same for al k; otherwise there emerges a lower bound of the order nk.



2016 ◽  
Vol 19 (suppl 1) ◽  
pp. 2-7 ◽  
Author(s):  
Silvia Rozenberg ◽  
Fernando Audebert ◽  
Marina Galano ◽  
Isabel Vergara Ogando ◽  
Cecilia Mendive


Sign in / Sign up

Export Citation Format

Share Document