scholarly journals Finite element approach to Bragg edge neutron strain tomography

2020 ◽  
Vol 60 ◽  
Author(s):  
Riya Aggarwal ◽  
Mike Meylan ◽  
Bishnu Lamichhane ◽  
Chris Wensrich

A number of techniques and applications in neutron imaging that exploit wavelength resolved measurements have been developed recently. One such technique, known as energy resolved neutron imaging, receives ample attention because of its capability to not only visualise but to also quantify physical attributes with spatial resolution. The objective of this article is to develop a reconstruction algorithm for elastic strain tomography from Bragg edge neutron transmission strain images obtained from a pulsed neutron beam with high resolution. This technique has several advantages over those using monochromatic neutron beams from continuous sources; for example, finer wavelength resolution. In contrast to the conventional radon based computed tomography, wherein neutron transmission revolves around the inversion of the longitudinal ray transform that has uniqueness issues, the reconstruction in the proposed algorithm is based on the least squares approach, constrained by an equilibrium formulated through the finite element method. References B. Abbey, S. Y. Zhang, W. J. J. Vorster, and A. M. Korsunsky. Feasibility study of neutron strain tomography. Proc. Eng., 1\penalty 0 (1):185–188, 2009. doi:10.1016/j.proeng.2009.06.043. R. Aggarwal, M. H. Meylan, B. P. Lamichhane, and C. M. Wensrich. Energy resolved neutron imaging for strain reconstruction using the finite element method. J. Imag., 6(3):13, 2020. doi:10.3390/jimaging6030013. J. N. Hendriks, A. W. T. Gregg, C. M. Wensrich, A. S. Tremsin, T. Shinohara, M. Meylan, E. H. Kisi, V. Luzin, and O. Kirsten. Bragg-edge elastic strain tomography for in situ systems from energy-resolved neutron transmission imaging. Phys. Rev. Mat., 1:053802, 2017. doi:10.1103/PhysRevMaterials.1.053802. C. Jidling, J. Hendriks, N. Wahlstrom, A. Gregg, T. B. Schon, C. Wensrich, and A. Wills. Probabilistic modelling and reconstruction of strain. Nuc. Inst. Meth. Phys. Res. B, pages 141–155, 2018. doi:10.1016/j.nimb.2018.08.051. W. R. B. Lionheart and P. J. Withers. Diffraction tomography of strain. Inv. Prob., 31:045005, 2015. doi:10.1088/0266-5611/31/4/045005. C. E. Rasmussen and C. K. I. Williams. Gaussian processes for machine learning. MIT Press, 2006. URL https://mitpress.mit.edu/books/gaussian-processes-machine-learning. C. M. Wensrich, E. Kisi, V. Luzin, and O. Kirstein. Non-contact measurement of the stress within granular materials via neutron diffraction. AIP Conf. Proc., 1542:441–444, 2013. doi:10.1063/1.4811962. R. Woracek, J. Santisteban, A. Fedrigo, and M. Strobl. Diffraction in neutron imaging–-a review. Nuc. Inst. Meth. Phys. Res. A, 878:141–158, 2018. doi:10.1016/j.nima.2017.07.040.

2020 ◽  
Author(s):  
Renzo Phellan ◽  
Bahe Hachem ◽  
Julien Clin ◽  
Jean‐Marc Mac‐Thiong ◽  
Luc Duong

2020 ◽  
Vol 6 (3) ◽  
pp. 13
Author(s):  
Riya Aggarwal ◽  
Michael H. Meylan ◽  
Bishnu P. Lamichhane ◽  
Chris M. Wensrich

A novel pulsed neutron imaging technique based on the finite element method is used to reconstruct the residual strain within a polycrystalline material from Bragg edge strain images. This technique offers the possibility of a nondestructive analysis of strain fields with a high spatial resolution. The finite element approach used to reconstruct the strain uses the least square method constrained by the conditions of equilibrium. This inclusion of equilibrium makes the problem well-posed. The procedure is developed and verified by validating for a cantilevered beam problem. It is subsequently demonstrated by reconstructing the strain from experimental data for a ring-and-plug sample, measured at the spallation neutron source RADEN at J-PARC in Japan. The reconstruction is validated by comparison with conventional constant wavelength strain measurements on the KOWARI diffractometer at ANSTO in Australia. It is also shown that the addition of a Tikhonov regularisation scheme further improves the reconstruction.


Nanoscale ◽  
2019 ◽  
Vol 11 (43) ◽  
pp. 20868-20875 ◽  
Author(s):  
Junxiong Guo ◽  
Yu Liu ◽  
Yuan Lin ◽  
Yu Tian ◽  
Jinxing Zhang ◽  
...  

We propose a graphene plasmonic infrared photodetector tuned by ferroelectric domains and investigate the interfacial effect using the finite element method.


Sign in / Sign up

Export Citation Format

Share Document