Optimal Non-isothermal Reactor Network for Van de Vusse Reaction

Author(s):  
Ravindra S Waghmare ◽  
Arun S Moharir

For complex reactions the optimal reactor networks can involve several reactors operating at various temperature profiles. The often-reported strategy of optimizing parameters of a heuristically predetermined reactor system (Super-structure Approach) falls short of obtaining true solution due to the presence of multiple local optima. Attainable set method gives Global optimum but requires study of each reaction scheme in depth. Here one such study using phase-plane analysis (instead of convexity based analysis) is reported for finding globally optimal non-isothermal reactor network for van de Vusse reaction (A -> B -> C, 2A -> D, objective is to maximize yield of B). Compared to two-reactor networks proposed earlier, it is found that up to 5 reactors (CSTR with/without bypass of feed, Isothermal PFR, Non-isothermal PFR, CSTR, Isothermal PFR) may be required to get the highest yield of the desired intermediate. The proposed method involves only elementary calculus. The detailed solution algorithm has been described using analogy with highways. Three cases with the values of reaction constants reported in the literature have been solved.

2021 ◽  
Vol 90 ◽  
pp. 203-204
Author(s):  
C. Rodrigues ◽  
M. Correia ◽  
J. Abrantes ◽  
B. Rodrigues ◽  
J. Nadal

2021 ◽  
Vol 12 (4) ◽  
pp. 98-116
Author(s):  
Noureddine Boukhari ◽  
Fatima Debbat ◽  
Nicolas Monmarché ◽  
Mohamed Slimane

Evolution strategies (ES) are a family of strong stochastic methods for global optimization and have proved their capability in avoiding local optima more than other optimization methods. Many researchers have investigated different versions of the original evolution strategy with good results in a variety of optimization problems. However, the convergence rate of the algorithm to the global optimum stays asymptotic. In order to accelerate the convergence rate, a hybrid approach is proposed using the nonlinear simplex method (Nelder-Mead) and an adaptive scheme to control the local search application, and the authors demonstrate that such combination yields significantly better convergence. The new proposed method has been tested on 15 complex benchmark functions and applied to the bi-objective portfolio optimization problem and compared with other state-of-the-art techniques. Experimental results show that the performance is improved by this hybridization in terms of solution eminence and strong convergence.


2012 ◽  
Vol 2012 (04) ◽  
pp. P04004 ◽  
Author(s):  
Vandana Yadav ◽  
Rajesh Singh ◽  
Sutapa Mukherji

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Fanfan Chen ◽  
Dingbian Qian ◽  
Xiying Sun ◽  
Yinyin Wu

<p style='text-indent:20px;'>We prove the existence and multiplicity of subharmonic solutions for bounded coupled Hamiltonian systems. The nonlinearities are assumed to satisfy Landesman-Lazer conditions at the zero eigenvalue, and to have some kind of sublinear behavior at infinity. The proof is based on phase plane analysis and a higher dimensional version of the Poincaré-Birkhoff twist theorem by Fonda and Ureña. The results obtained generalize the previous works for scalar second-order differential equations or relativistic equations to higher dimensional systems.</p>


Author(s):  
ZD Zhou ◽  
YQ Xie ◽  
DT Pham ◽  
S Kamsani ◽  
M Castellani

The aim of multimodal optimisation is to find significant optima of a multimodal objective function including its global optimum. Many real-world applications are multimodal optimisation problems requiring multiple optimal solutions. The Bees Algorithm is a global optimisation procedure inspired by the foraging behaviour of honeybees. In this paper, several procedures are introduced to enhance the algorithm’s capability to find multiple optima in multimodal optimisation problems. In the proposed Bees Algorithm for multimodal optimisation, dynamic colony size is permitted to automatically adapt the search effort to different objective functions. A local search approach called balanced search technique is also proposed to speed up the algorithm. In addition, two procedures of radius estimation and optima elitism are added, to respectively enhance the Bees Algorithm’s ability to locate unevenly distributed optima, and eliminate insignificant local optima. The performance of the modified Bees Algorithm is evaluated on well-known benchmark problems, and the results are compared with those obtained by several other state-of-the-art algorithms. The results indicate that the proposed algorithm inherits excellent properties from the standard Bees Algorithm, obtaining notable efficiency for solving multimodal optimisation problems due to the introduced modifications.


Sign in / Sign up

Export Citation Format

Share Document