scholarly journals Modeling of Stochastic Volatility to Validate IDR Anchor Currency

2018 ◽  
Vol 20 (2) ◽  
pp. 165 ◽  
Author(s):  
Didit Budi Nugroho ◽  
Tundjung Mahatma ◽  
Yulius Pratomo

This study aims to assess the performance of stochastic volatility models for their estimation of foreign exchange rate returns' volatility using daily data from Bank Indonesia (BI). The model is then applied to validate the anchor currency of Indonesian rupiah (IDR). Two stylized facts are incorporated into the models: A correlation between the previous returns and their conditional variance, and return errors following four different error distributions namely Normal, Student-t, non-central Student-t, and generalized hyperbolic skew Student-t. The analysis is based on the application of daily returns data from nine foreign currency selling rates to IDR from 2010 to 2015, including the AUD, CHF, CNY, EUR, GBP, JPY, MYR, SGD, and USD. The main results are: (1) Mixed evidence of positive and negative relationships between the return and its variance were found, especially significant correlations being found for the IDR/AUD, IDR/CHF, IDR/JPY, IDR/SGD, and IDR/USD returns series; (2) the model with the generalized hyperbolic skew Student's t-distribution specification for the returns error provides the best performance; and (3) anchoring the IDR to established hard currencies is more appropriate than anchoring it to other currencies.

2021 ◽  
Vol 14 (5) ◽  
pp. 225
Author(s):  
Zhongxian Men ◽  
Tony S. Wirjanto ◽  
Adam W. Kolkiewicz

This paper studies multiscale stochastic volatility models of financial asset returns. It specifies two components in the log-volatility process and allows for leverage/asymmetric effects from both components while return innovation terms follow a heavy/fat tailed Student t distribution. The two components are shown to be important in capturing persistent dependence in return volatility, which is often absent in applications of stochastic volatility models which incorporate leverage/asymmetric effects. The models are applied to asset returns from a foreign currency market and an equity market. The model fits are assessed, and the proposed models are shown to compare favorably to the one-component asymmetric stochastic volatility models with Gaussian and Student t distributed innovation terms.


Risks ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 12 ◽  
Author(s):  
David E. Allen ◽  
Michael McAleer

The paper examines the relative performance of Stochastic Volatility (SV) and Generalised Autoregressive Conditional Heteroscedasticity (GARCH) (1,1) models fitted to ten years of daily data for FTSE. As a benchmark, we used the realized volatility (RV) of FTSE sampled at 5 min intervals taken from the Oxford Man Realised Library. Both models demonstrated comparable performance and were correlated to a similar extent with RV estimates when measured by ordinary least squares (OLS). However, a crude variant of Corsi’s (2009) Heterogeneous Autoregressive (HAR) model, applied to squared demeaned daily returns on FTSE, appeared to predict the daily RV of FTSE better than either of the two models. Quantile regressions suggest that all three methods capture tail behaviour similarly and adequately. This leads to the question of whether we need either of the two standard volatility models if the simple expedient of using lagged squared demeaned daily returns provides a better RV predictor, at least in the context of the sample.


2014 ◽  
Vol 04 (03) ◽  
pp. 1450011
Author(s):  
Jing-Zhi Huang ◽  
Li Xu

We propose and estimate a new class of equity return models that incorporate scale mixtures of the skew-normal distribution for the error distribution into the standard stochastic volatility framework. The main advantage of our models is that they can simultaneously accommodate the skewness, heavy-tailedness, and leverage effect of equity index returns observed in the data. The proposed models are flexible and parsimonious, and include many asymmetrically heavy-tailed error distributions — such as skew-t and skew-slash distributions — as special cases. We estimate a variety of specifications of our models using the Bayesian Markov Chain Monte Carlo method, with data on daily returns of the S&P 500 index over 1987–2009. We find that the proposed models outperform existing ones of index returns.


2020 ◽  
Vol 13 (9) ◽  
pp. 202
Author(s):  
David Edmund Allen

The paper examines the relative performance of Stochastic Volatility (SV) and GARCH(1,1) models fitted to twenty plus years of daily data for three indices. As a benchmark, I use the realized volatility (RV) for the S&P 500, DOW JONES and STOXX50 indices, sampled at 5-minute intervals, taken from the Oxford Man Realised Library. Both models demonstrate comparable performance and are correlated to a similar extent with the RV estimates, when measured by OLS. However, a crude variant of Corsi’s (2009) Heterogenous Auto-Regressive (HAR) model, applied to squared demeaned daily returns on the indices, appears to predict the daily RV of the series, better than either of the two base models. The base SV model was then enhanced by adding a regression matrix including the first and second moments of the demeaned return series. Similarly, the GARCH(1,1) model was augmented by adding a vector of demeaned squared returns to the mean equation. The augmented SV model showed a marginal improvement in explanatory power. This leads to the question of whether we need either of the two standard volatility models, if the simple expedient of using lagged squared demeaned daily returns provides a better RV predictor, at least in the context of the indices in the sample. The paper thus explores whether simple rules of thumb match the volatility forecasting capabilities of more sophisticated models.


Sign in / Sign up

Export Citation Format

Share Document