autoregressive conditional heteroscedasticity
Recently Published Documents


TOTAL DOCUMENTS

200
(FIVE YEARS 96)

H-INDEX

16
(FIVE YEARS 2)

2022 ◽  
Vol 10 (4) ◽  
pp. 562-572
Author(s):  
Eka Anisha ◽  
Di Asih I Maruddani ◽  
Suparti Suparti

Stocks are one type of investment that promises return for investors but often carries a high risk. Value at Risk (VaR) is a measuring tool that can calculate the amount of the worst loss that occurs in a stock portfolio with a certain level of confidence and within a certain time period. In general, financial data have a high volatility value, which causes the residuals are not normally distributed. ARCH/GARCH modoel is used to solve the heteroscedasticity problem. If the data also have an asymmetric effect, it is modelled with Exponential GARCH model. Copula-Frank is part of the Archimedian copula which is used to solve empirical cases. The data on this study were BBCA and KLBF stock price return data in the observation period 30 December 2011 – 6 December 2019. Furthermore, to test the validity of the VaR model, a backtesting test will be carried out using the Kupiec Test. The results showed that the best model used for BBCA stocks was ARIMA (1,0,1) EGARCH (1,1) and for KLBF stocks was ARIMA (1,0,1) EGARCH (1,2). The amount of risk with a 95% confidence level used a combination of the EGARCH and Copula-Frank models was 2.233% of today's investment. Based on the backtesting test used the Kupiec Test, the VaR model of the portfolio obtained was declared valid.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 560
Author(s):  
Maciej Mróz

This study aims to examine energy security in terms of crude oil and copper supply. While oil remains the leading energy commodity globally, copper is crucial for many new technologies, foremost for RES. Therefore, both oil and copper are extremely important for current and future energy security. This article contains a bivariate methodological approach to a comparative analysis of oil and copper supply: determining supply security with an Index of security of supply, and examines price stability with generalized autoregressive conditional heteroscedasticity (GARCH) models. This research provides evidence that there are many differences but also significant similarities between these two completely different commodities in terms of both supply security and price stability. Facing the future for RES, significant demand may cause a threat to energy security on a previously unknown scale. Therefore this instability, both supply- and price-related, appears to be the main threat to future energy security.


Author(s):  
Toan Luu Duc Huynh

AbstractWe present a textual analysis that explains how Elon Musk’s sentiments in his Twitter content correlates with price and volatility in the Bitcoin market using the dynamic conditional correlation-generalized autoregressive conditional heteroscedasticity model, allowing less sensitive to window size than traditional models. After examining 10,850 tweets containing 157,378 words posted from December 2017 to May 2021 and rigorously controlling other determinants, we found that the tone of the world’s wealthiest person can drive the Bitcoin market, having a Granger causal relation with returns. In addition, Musk is likely to use positive words in his tweets, and reversal effects exist in the relationship between Bitcoin prices and the optimism presented by Tesla’s CEO. However, we did not find evidence to support linkage between Musk’s sentiments and Bitcoin volatility. Our results are also robust when using a different cryptocurrency, i.e., Ether this paper extends the existing literature about the mechanisms of social media content generated by influential accounts on the Bitcoin market.


2021 ◽  
Vol 12 (4) ◽  
pp. 111
Author(s):  
Cesar Gurrola-Rios ◽  
Ana Lorena Jimenez-Preciado

The effects of COVID-19 have been devastating globally. However, countries have essential asymmetries regarding the disease spread dynamics and the respective mortality rates. In addition to containment strategies and boosting growth and economic development in the face of the COVID-19 pandemic, society calls for solutions that allow the development of vaccines, treatments for the disease, and especially, indicators or early warnings that anticipate the evolution of new infections and deaths. This research aims to track the total deaths caused by COVID-19 in the most affected countries by the pandemics after the approval, distribution, and implementation of vaccines from 2021. We proposed an Autoregressive Integrated Moving Average (ARIMA) specification as a first adjustment. Subsequently, we estimate the conditional variance of total deaths from an Exponential Generalized Autoregressive Conditional Heteroscedasticity (EGARCH). Finally, we compute a rolling density backtesting within a 7-day rolling window to demonstrate the robustness estimation for COVID-19 mortality. The work's main contribution lies in exhibiting a tracking indicator for volatility and COVID-19 direction, including a weekly window to observe its evolution.


2021 ◽  
Vol 4 (2) ◽  
pp. 114
Author(s):  
Husna Afanyn Khoirunissa ◽  
Sugiyanto Sugiyanto ◽  
Sri Subanti

<p><strong>A</strong><strong>bstract</strong><strong>.</strong> The 1997 Asian financial crisis, which occurred until 1998, had a significant impact on the economies of Asian countries, including South Korea. The crisis brought down the South Korean currency quickly and sent the economy into sudden decline. Because the impact of the financial crisis was severe and sudden, South Korean requires a system which able to sight crisis signals, therefore that, the crisis will be fended off. One in all the indicators that can detect the financial crisis signals is that the term of trade indicator which has high fluctuation and change in the exchange rate regime. The mixture of Markov Switching and volatility models, Generalized Autoregressive Conditional Heteroscedasticity (GARCH), or MS-GARCH could explain the crisis. The MS-GARCH model was built using data from the South Korean term of trade indicator during January 1990 until March 2020. The findings obtained in this research can be inferred that the best model of the term of trade is MS-GARCH (2,1,1). Term of trade indicator on that model could explain the Asian monetary crisis in 1997 and also the global monetary crisis in 2008. The smoothed probability of term of trade indicators predicts in April till December 2020 period, there will be no signs of the monetary crisis in South Korea.</p><p><strong>Keywords</strong><strong>: </strong>financial crisis, MS-GARCH, South Korea, term of trade indicator</p>


2021 ◽  
Vol 3 (2) ◽  
pp. 20-35
Author(s):  
Michael Sunday Olayemi ◽  
Adenike Oluwafunmilola Olubiyi ◽  
Oluwamayowa Opeyimika Olajide ◽  
Omolola Felicia Ajayi

In general, volatility is known and referred to as variance and it is a degree of spread of a random variable from its mean value. Two volatility models were considered in this paperwork. Nigeria's inflation rate was modeled by applying the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) and Threshold GARCH models. Symmetric and asymmetric models captured the most commonly stylized facts about the rate of inflation in Nigeria like leverage effects and irregularities in clustering and were studied. These models are GARCH (1,1) and TGARCH (1,1). This work estimated the comparison of volatility models in term of best fit and forecasting. The result showed that TGARCH (1,1) model outperformed GARCH (1,1) models in term of best fit, because it has the least AIC of 2.590438. We forecasted to see the level of volatility using Theils Inequality Coefficient and the result shows that TGARCH has the highest Theils Inequality Coefficient of 0.065075 which makes the TGARCH model better than the GARCH model in this research. From the initial and modified sample static forecast, it was discovered that the return on inflation is stable and shows that volatility slows towards the end of the month, we can see a downward spiral, which means price reaction to economic crisis led to lower production, lower wages, decreased demand, and still lower prices.


Author(s):  
Галина Львовна Толкаченко ◽  
Павел Андреевич Карасев

Диверсификация - один из важнейших элементов в инвестиционной деятельности. Инвесторы пытаются найти баланс при формировании портфеля и его реструктуризации, стремясь одновременно максимизировать доходность и минимизировать риски. Целью данной работы является оценка возможности диверсификации портфеля облигаций российского рынка с помощью включения альтернативной традиционным облигациям формы - сукук в условиях пандемии COVID-19. Представленный в статье анализ такой возможности составляет определенный элемент новизны. В качестве наиболее подходящей модели для корреляционного анализ выбрана «DCC-MGARCH» модель (динамическая модель авторегрессионной условной гетероскедастичности). Результаты исследования показывают, что инвесторы, предпочитающие долговые суверенные ценные бумаги России и корпоративные облигации российских компаний, имеют возможность диверсифицировать портфель путем включения исламских облигаций. Данный вывод объясняется наличием отрицательной корреляционной связи между индексом сукук и индексами российских облигаций, как корпоративных, так и суверенных. Diversification is one of key elements in investment management. Investors strive to find a balance in the formation of a portfolio and its restructuring, simultaneously maximizing profitability and minimizing risks. The purpose of this work is to assess the possibility of diversification of the Russian bonds portfolioby including an alternative to traditional bonds-sukuk. The DCC-MGARCH model (Dynamic Conditional Correlation Multivariate General Autoregressive Conditional Heteroscedasticity Model) was chosen as the most suitable model for correlation analysis. The results of the study show that investors who prefer Russian sovereign debt securities or corporate bonds of Russian companies couldeffectively diversify their portfolio by including Islamic bonds during the COVID-19 pandemic. This conclusion is explained by the presence of a negative correlation between the Dow Jones Sukuk Index as a proxy for sukuk market and the indices of Russian bonds, both corporate and sovereign.


2021 ◽  
Vol 67 (No. 8) ◽  
pp. 305-315
Author(s):  
Dejan Živkov ◽  
Marijana Joksimović ◽  
Suzana Balaban

In this paper, we evaluate the downside risk of six major agricultural commodities – corn, wheat, soybeans, soybean meal, soybean oil and oats. For research purposes, we first use an optimal generalised autoregressive conditional heteroscedasticity (GARCH) model to create residuals, which we later use for measuring downside risks via parametric and semiparametric approaches. Modified value-at-risk (mVaR) and modified conditional value-at-risk (mCVaR) provide more accurate downside risk results than do ordinary value-at-risk (VaR) and conditional value-at-risk (CVaR). We report that soybean oil has the lowest mVaR and mCVaR because it has two very favourable features – skewness around zero and low kurtosis. The second-best commodity is soybeans. The worst-performing downside risk results are in wheat and oats, primarily because of their very high kurtosis values. On the basis of the results, we propose to investors and various agents involved with these agricultural assets that they reduce the risk of loss by combining these assets with other financial or commodity assets that have low risk.


2021 ◽  
Vol 3 (3) ◽  
pp. 171-177
Author(s):  
Yulvia Fitri Rahmawati ◽  
Etik Zukhronah ◽  
Hasih Pratiwi

Abstract– The stock price is the value of the stock in the market that fluctuates from time to time. Time series data in the financial sector generally have quite high volatility which can cause heteroscedasticity problems. This study aims to model and to predict the stock price of PT Indofood Sukses Makmur Tbk using the ARIMA-ARCH model. The data used is daily stock prices from 2nd June 2020 to 15th February 2021 as training data, while from 16th February 2021 to 1st March 2021 as testing data. ARIMA-ARCH model is a model that combines Autoregressive Integrated Moving Average (ARIMA) and Autoregressive Conditional Heteroscedasticity (ARCH), which can be used to overcome the residues of the ARIMA model which are indicated to have heteroscedasticity problems. The result showed that the model that could be used was ARIMA(1,1,2)-ARCH(1). This model can provide good forecasting result with a relatively small MAPE value of 0.515785%. Abstrak– Harga saham adalah nilai saham di pasar yang berfluktuasi dari waktu ke waktu. Data runtun waktu di sektor keuangan umumnya memiliki volatilitas cukup tinggi yang dapat menyebabkan masalah heteroskedastisitas. Penelitian ini bertujuan untuk memodelkan dan meramalkan harga saham PT Indofood Sukses Makmur Tbk menggunakan model ARIMA-ARCH. Data yang digunakan adalah harga saham harian dari 2 Juni 2020 hingga 15 Februari 2021 sebagai data training, sedangkan dari 16 Februari 2021 hingga 1 Maret 2021 sebagai data testing. Model ARIMA-ARCH merupakan suatu model yang menggabungkan Autoregressive Integrated Moving Average (ARIMA) dan Autoregressive Conditional Heteroscedasticity (ARCH), yang dapat digunakan untuk mengatasi residu dari model ARIMA yang terindikasi memiliki masalah heteroskedastisitas. Hasil penelitian menunjukkan bahwa model yang dapat digunakan adalah ARIMA(1,1,2)-ARCH(1). Model tersebut mampu memberikan hasil peramalan yang baik dengan perolehan nilai MAPE yang relatif kecil yaitu 0,515785%.


Sign in / Sign up

Export Citation Format

Share Document