scholarly journals Power Flow Control for Hybrid Electric Vehicles Using Trolley Power and On-board Batteries

2007 ◽  
Vol 48 (1) ◽  
pp. 30-36 ◽  
Author(s):  
Masamichi OGASA ◽  
Yoshiaki TAGUCHI
2004 ◽  
Vol 37 (22) ◽  
pp. 481-488
Author(s):  
Lucio Ippolito ◽  
Vincenzo Loia ◽  
Pierluigi Siano

Author(s):  
Guillermo Becerra ◽  
Jose´ Luis Mendoza-Soto ◽  
Luis Alvarez-Icaza

In this paper a new strategy for controlling the power flow in hybrid electric vehicles is described. The strategy focuses in the planetary gear system where kinematic and dynamic constraints must be satisfied. The aim is to satisfy driver demands and to reduce fuel consumption. The resultant power flow control is continuous and uses the internal combustion engine with the maximum possible efficiency. The strategy is not optimal, although it is inspired by the solution to most optimization problems. The main advantages are that the computational cost is low, when compared to optimization based approaches, and that it is easy to tune. The strategy is tested with simulations using a mathematical model of a power train of a hybrid diesel-electric bus subjected to the power demands of representative urban area driving cycles. Simulation results indicate that the strategy achieves small speed tracking errors and attains good fuel consumption reduction levels.


2005 ◽  
Vol 38 (1) ◽  
pp. 218-223 ◽  
Author(s):  
Kasemsak Uthaichana ◽  
Sorin Bengea ◽  
Raymond DeCarlo

Author(s):  
Guillermo Becerra ◽  
Luis Alvarez-Icaza ◽  
Alfonso Pantoja-Vázquez

Two control strategies for power flow control in hybrid electric vehicles (HEVs) with parallel configuration and a planetary gear system as a power coupling device between the internal combustion engine and the electric machine are proposed in this paper. The aim of both strategies is to determine, for a given driving cycle, an appropriate mixture of the power provided by the two engines. Performance is measured not only in terms of fuel consumption; driving cycle tracking and preservation of energy in the bank of batteries are also considered. The first strategy, named the PGS strategy as it is designed around the planetary gear system, is heuristic, inspired by bang–bang optimal control formulations and has low computational load, while the second is an optimal one derived from Pontryagin’s minimum principle (PMP). It is shown that, under appropriate choice of the weighting parameters in the Hamiltonian of the PMP, both strategies give very similar results and, therefore, that the PGS strategy corresponds to a feasible solution to an optimization problem. Both strategies can be implemented in real time, however, the PGS strategy is easier to tune. Tuning of the strategies’ parameters is independent of the driving cycle. The power flow control laws are continuous and enforce the use of the internal combustion engine with the maximum possible efficiency. The strategies are tested with simulations of a power train of a hybrid diesel–electric bus subjected to the demands of four representative urban area driving cycles. Although optimization solutions are based on simplified dynamic models, simulation results are verified with more detailed dynamic models of the HEV main subsystems. This allows us to evaluate the accuracy of the results and to verify the hypothesis established in the optimization formulation. Simulation results indicate that both strategies attain good fuel consumption reduction levels.


2020 ◽  
Vol 10 (23) ◽  
pp. 8744
Author(s):  
Juan P. Torreglosa ◽  
Pablo Garcia-Triviño ◽  
David Vera ◽  
Diego A. López-García

The hybridization of vehicles is a viable step toward overcoming the challenge of the reduction of emissions related to road transport all over the world. To take advantage of the emission reduction potential of hybrid electric vehicles (HEVs), the appropriate design of their energy management systems (EMSs) to control the power flow between the engine and the battery is essential. This work presents a systematic literature review (SLR) of the more recent works that developed EMSs for HEVs. The review is carried out subject to the following idea: although the development of novel EMSs that seek the optimum performance of HEVs is booming, in the real world, HEVs continue to rely on well-known rule-based (RB) strategies. The contribution of this work is to present a quantitative comparison of the works selected. Since several studies do not provide results of their models against commercial RB strategies, it is proposed, as another contribution, to complete their results using simulations. From these results, it is concluded that the improvement of the analyzed EMSs ranges roughly between 5% and 10% with regard to commercial RB EMSs; in comparison to the optimum, the analyzed EMSs are nearer to the optimum than commercial RB EMSs.


Sign in / Sign up

Export Citation Format

Share Document