scholarly journals Analyzing the Improvements of Energy Management Systems for Hybrid Electric Vehicles Using a Systematic Literature Review: How Far Are These Controls from Rule-Based Controls Used in Commercial Vehicles?

2020 ◽  
Vol 10 (23) ◽  
pp. 8744
Author(s):  
Juan P. Torreglosa ◽  
Pablo Garcia-Triviño ◽  
David Vera ◽  
Diego A. López-García

The hybridization of vehicles is a viable step toward overcoming the challenge of the reduction of emissions related to road transport all over the world. To take advantage of the emission reduction potential of hybrid electric vehicles (HEVs), the appropriate design of their energy management systems (EMSs) to control the power flow between the engine and the battery is essential. This work presents a systematic literature review (SLR) of the more recent works that developed EMSs for HEVs. The review is carried out subject to the following idea: although the development of novel EMSs that seek the optimum performance of HEVs is booming, in the real world, HEVs continue to rely on well-known rule-based (RB) strategies. The contribution of this work is to present a quantitative comparison of the works selected. Since several studies do not provide results of their models against commercial RB strategies, it is proposed, as another contribution, to complete their results using simulations. From these results, it is concluded that the improvement of the analyzed EMSs ranges roughly between 5% and 10% with regard to commercial RB EMSs; in comparison to the optimum, the analyzed EMSs are nearer to the optimum than commercial RB EMSs.

2021 ◽  
Vol 11 (7) ◽  
pp. 3192
Author(s):  
Muhammad Rafaqat Ishaque ◽  
Muhammad Adil Khan ◽  
Muhammad Moin Afzal ◽  
Abdul Wadood ◽  
Seung-Ryle Oh ◽  
...  

Due to increasing fuel prices, the world is moving towards the use of hybrid electric vehicles (HEVs) because they are environmentally friendly, require less maintenance, and are a green technology. The energy management system (EMS) plays an important role in HEVs for the efficient storage of energy and control of the power flow mechanism. This paper deals with the design, modeling, and result-oriented approach for the development of EMS for HEVs using a fuzzy logic controller (FLC). Batteries and supercapacitors (SCs) are used as primary and secondary energy storage systems (ESSs), respectively. EMS consists of the ultra-power transfer algorithm (UPTA) and FLC techniques, which are used to control the power flow. The UPTA technique is used to charge the battery with the help of a single-ended primary inductor converter (SEPIC) during regenerative braking mode. The proposed research examines and compares the performance of FLC with a proportional integral (PI) controller by using MATLAB (Simulink) software. Three scenarios are built to confirm the efficiency of the proposed design. The simulation results show that the proposed design with FLC has a better response as its rise time (2.6 m) and settling time (1.47 µs) are superior to the PI controller.


2015 ◽  
Vol 4 (1) ◽  
pp. 178-189 ◽  
Author(s):  
Daniel Goerke ◽  
Michael Bargende ◽  
Uwe Keller ◽  
Norbert Ruzicka ◽  
Stefan Schmiedler

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5538
Author(s):  
Bảo-Huy Nguyễn ◽  
João Pedro F. Trovão ◽  
Ronan German ◽  
Alain Bouscayrol

Optimization-based methods are of interest for developing energy management strategies due to their high performance for hybrid electric vehicles. However, these methods are often complicated and may require strong computational efforts, which can prevent them from real-world applications. This paper proposes a novel real-time optimization-based torque distribution strategy for a parallel hybrid truck. The strategy aims to minimize the engine fuel consumption while ensuring battery charge-sustaining by using linear quadratic regulation in a closed-loop control scheme. Furthermore, by reformulating the problem, the obtained strategy does not require the information of the engine efficiency map like the previous works in literature. The obtained strategy is simple, straightforward, and therefore easy to be implemented in real-time platforms. The proposed method is evaluated via simulation by comparison to dynamic programming as a benchmark. Furthermore, the real-time ability of the proposed strategy is experimentally validated by using power hardware-in-the-loop simulation.


Author(s):  
Carlos Villarreal-Hernandez ◽  
Javier Loranca-Coutino ◽  
Omar F. Ruiz-Martinez ◽  
Jonathan C. Mayo-Maldonado ◽  
Jesus E. Valdez-Resendiz ◽  
...  

2014 ◽  
Vol 15 (3) ◽  
pp. 1145-1154 ◽  
Author(s):  
Viktor Larsson ◽  
Lars Johannesson Mardh ◽  
Bo Egardt ◽  
Sten Karlsson

Sign in / Sign up

Export Citation Format

Share Document