scholarly journals TAUBERIAN THEOREMS FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY OF INTEGRALS

Author(s):  
Firat Ozsarac ◽  
Ibrahim Canak

Let $q$ be a positive weight function on $\mathbf{R}_{+}:=[0, \infty)$ which is integrable in Lebesgue's sense over every finite interval $(0,x)$ for $0<x<\infty$, in symbol: $q \in L^{1}_{loc} (\mathbf{R}_{+})$ such that $Q(x):=\int_{0}^{x} q(t) dt\neq 0$ for each $x>0$, $Q(0)=0$ and $Q(x) \rightarrow \infty $ as $x \to \infty $.Given a real or complex-valued function $f \in L^{1}_{loc} (\mathbf{R}_{+})$, we define $s(x):=\int_{0}^{x}f(t)dt$ and$$\tau^{(0)}_q(x):=s(x), \tau^{(m)}_q(x):=\frac{1}{Q(x)}\int_0^x \tau^{(m-1)}_q(t) q(t)dt\,\,\, (x>0, m=1,2,...),$$provided that $Q(x)>0$. We say that $\int_{0}^{\infty}f(x)dx$ is summable to $L$ by the $m$-th iteration of weighted mean method determined by the function $q(x)$, or for short, $(\overline{N},q,m)$ integrable to a finite number $L$ if$$\lim_{x\to \infty}\tau^{(m)}_q(x)=L.$$In this case, we write $s(x)\rightarrow L(\overline{N},q,m)$. It is known thatif the limit $\lim _{x \to \infty} s(x)=L$ exists, then $\lim _{x \to \infty} \tau^{(m)}_q(x)=L$ also exists. However, the converse of this implicationis not always true. Some suitable conditions together with the existence of the limit $\lim _{x \to \infty} \tau^{(m)}_q(x)$, which is so called Tauberian conditions, may imply convergence of $\lim _{x \to \infty} s(x)$. In this paper, one- and two-sided Tauberian conditions in terms of the generating function and its generalizations for $(\overline{N},q,m)$ summable integrals of real- or complex-valued functions have been obtained. Some classical type Tauberian theorems given for Ces\`{a}ro summability $(C,1)$ and weighted mean method of summability $(\overline{N},q)$ have been extended and generalized.  

Filomat ◽  
2015 ◽  
Vol 29 (10) ◽  
pp. 2281-2287 ◽  
Author(s):  
Ümit Totur ◽  
Muhammet Okura

Let 0 ? p(x) be a nondecreasing real valued differentiable function on [0,?) such that p(0) = 0 and p(x)? ? as x ? ?. Given a real valued function f (x) which is continuous on [0,?) and s(x) = x?0 f(t)dt. We define the weighted mean of s(x) as ?p(x) = 1/p(x) x?0 p'(t)s(t)dt, where p'(t) is derivative of p(t). It is known that if the limit limx?? s(x)=s exists, then limx?? ?p(x) = s also exists. However, the converse is not always true. Adding some suitable conditions to existence of lim x?? ?p(x) which are called Tauberian conditions may imply convergence of the integral ??0 f (t)dt. In this work, we give some classical type Tauberian theorems to retrieve convergence of s(x) out of weighted mean integrability of s(x) with some Tauberian conditions.


2012 ◽  
Vol 62 (2) ◽  
Author(s):  
İbrahi̇m Çanak ◽  
Ümi̇t Totur

AbstractLet u = (u n) be a sequence of real numbers whose generator sequence is Cesàro summable to a finite number. We prove that (u n) is slowly oscillating if the sequence of Cesàro means of (ω n(m−1)(u)) is increasing and the following two conditions are hold: $$\begin{gathered} \left( {\lambda - 1} \right)\mathop {\lim \sup }\limits_n \left( {\frac{1} {{\left[ {\lambda n} \right] - n}}\sum\limits_{k = n + 1}^{\left[ {\lambda n} \right]} {\left( {\omega _k^{\left( m \right)} \left( u \right)} \right)^q } } \right)^{\frac{1} {q}} = o\left( 1 \right), \lambda \to 1^ + , q > 1, \hfill \\ \left( {1 - \lambda } \right)\mathop {\lim \sup }\limits_n \left( {\frac{1} {{n - \left[ {\lambda n} \right]}}\sum\limits_{k = \left[ {\lambda n} \right] + 1}^n {\left( {\omega _k^{\left( m \right)} \left( u \right)} \right)^q } } \right)^{\frac{1} {q}} = o\left( 1 \right), \lambda \to 1^ - , q > 1, \hfill \\ \end{gathered}$$ where (ω n(m) (u)) is the general control modulo of the oscillatory behavior of integer order m ≥ 1 of a sequence (u n) defined in [DİK, F.: Tauberian theorems for convergence and subsequential convergence with moderately oscillatory behavior, Math. Morav. 5, (2001), 19–56] and [λn] denotes the integer part of λn.


1993 ◽  
Vol 47 (3) ◽  
pp. 385-393 ◽  
Author(s):  
Jeff Connor

In the first section we establish a connection between gap Tauberian conditions and isomorphic copies of Co for perfect coregular conservative BK spaces and in the second we give a characterisation of gap Tauberian conditions for strong summability with respect to a nonnnegative regular summability matrix. These results are used to show that a gap Tauberian condition for strong weighted mean summability is also a gap Tauberian condition for ordinary weighted mean summability. We also make a remark regarding the support set of a matrix and give a Tauberian theorem for a class of conull spaces.


Filomat ◽  
2018 ◽  
Vol 32 (11) ◽  
pp. 3853-3865
Author(s):  
Sefa Sezer ◽  
Rahmet Savaş ◽  
İbrahim Çanak

We present new Tauberian conditions in terms of the general logarithmic control modulo of the oscillatory behavior of a real sequence (sn) to obtain lim n?? sn = ? from st - lim n?? sn = ?, where ? is a finite number. We also introduce the statistical (l,m) summability method and extend some Tauberian theorems to this method. The main results improve some well-known Tauberian theorems obtained for the statistical convergence.


Author(s):  
İbrahim Çanak ◽  
Gizem Erikli ◽  
Sefa Anıl Sezer ◽  
Ece Yaraşgil

We first define the concept of weighted mean method of summability and then present necessary and sufficient Tauberian conditions for the weighted mean summability of sequences in two-normed spaces. As corollaries, we establish two-normed analogues of two classical Tauberian theorems.


1981 ◽  
Vol 33 (5) ◽  
pp. 1261-1270 ◽  
Author(s):  
George Gasper

In his work on the Dirichlet problem for the Heisenberg group Greiner [5] showed that each Lα-spherical harmonic is a unique linear combination of functions of the formwith k = 0, 1,2, … and n = 0, ±l, ±2 , …, where Hk(α, n)(θiθ) is defined by the generating functionSince Hk(0,0)(eiθ) = Pk(cos θ), where Pk(x) is the Legendre polynomial of degree k, and these functions satisfy the orthogonality relationGreiner raised the question of whether the functions Hk(0,0)(eiθ) are orthogonal or biorthogonal with respect to some complex valued weight function.


2021 ◽  
Vol 25 (2) ◽  
pp. 175-187
Author(s):  
Hemen Dutta ◽  
Jyotishmaan Gogoi

We discuss Tauberian conditions under which the statistical convergence of double sequences of fuzzy numbers follows from the statistical convergence of their weighted means. We also prove some other results which are necessary to establish the main results.


2006 ◽  
Vol 43 (1) ◽  
pp. 115-129
Author(s):  
Árpád Fekete

The notions of statistical limit, limit inferior and limit superior of a measurable function at \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \(\infty\) \end{document} were introduced by Móricz. These notions can be considered as the nondiscrete analogues of those introduced for sequences of numbers by H. Fast, J. A. Fridy and C. Orhan. Let \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \(0 \not \equiv p\: \mathbb{R}_+ \to \mathbb{R}_+\) \end{document} be a nondecreasing function such that \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \(p(0)=0\) \end{document} and \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mbox{st-\!}\liminf_{t \to \infty} \frac{p(\lambda t)}{p(t)} >1 \ \text{for every} \lambda >1.$$ \end{document} Given a real- or complex-valued function \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \(f \in L_{{\rm loc}}^1 (\mathbb{R}_+)\) \end{document}, we define \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$s(x):= \int^x_0 f(u) \, du\ \text{and}\ \sigma(t) := \frac{1}{p(t)} \int^t_0 s(x) d p(x),\quad t>0.$$ \end{document} Our goal is to find necessary and sufficient conditions under which the existence of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \(\mbox{st-}\lim s(t)=l\) \end{document} follows from that of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \(\mbox{st-}\lim \sigma(t)=l\) \end{document}, where \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \(l\) \end{document} is a finite number. In the case of real-valued functions we present one-sided Tauberian conditions, while in the case of complex-valued functions we present two-sided Tauberian conditions.


Sign in / Sign up

Export Citation Format

Share Document