scholarly journals The structure of Cayley graphs of dihedral groups of Valencies 1, 2 and 3

2021 ◽  
Vol 40 (6) ◽  
pp. 1683-1691
Author(s):  
Saba AL-Kaseasbeh ◽  
Ahmad Erfanian

Let G be a group and S be a subset of G such that e ∉ S and S−1 ⊆ S. Then Cay(G, S) is a simple undirected Cayley graph whose vertices are all elements of G and two vertices x and y are adjacent if and only if xy−1 ∈ S. The size of subset S is called the valency of Cay(G, S). In this paper, we determined the structure of all Cay(D2n, S), where D2n is a dihedral group of order 2n, n ≥ 3 and |S| = 1, 2 or 3.

2020 ◽  
Vol 12 (04) ◽  
pp. 2050051
Author(s):  
Majid Arezoomand ◽  
Afshin Behmaram ◽  
Mohsen Ghasemi ◽  
Parivash Raeighasht

For a group [Formula: see text] and a subset [Formula: see text] of [Formula: see text] the bi-Cayley graph BCay[Formula: see text] of [Formula: see text] with respect to [Formula: see text] is the bipartite graph with vertex set [Formula: see text] and edge set [Formula: see text]. A bi-Cayley graph BCay[Formula: see text] is called a BCI-graph if for any bi-Cayley graph BCay[Formula: see text], [Formula: see text] implies that [Formula: see text] for some [Formula: see text] and [Formula: see text]. A group [Formula: see text] is called a [Formula: see text]-BCI-group if all bi-Cayley graphs of [Formula: see text] with valency at most [Formula: see text] are BCI-graphs. In this paper, we characterize the [Formula: see text]-BCI dihedral groups for [Formula: see text]. Also, we show that the dihedral group [Formula: see text] ([Formula: see text] is prime) is a [Formula: see text]-BCI-group.


MATEMATIKA ◽  
2019 ◽  
Vol 35 (3) ◽  
Author(s):  
Amira Fadina Ahmad Fadzil ◽  
Nor Haniza Sarmin ◽  
Ahmad Erfanian

Let G be a finite group and S be a subset of G where S does not include the identity of G and is inverse closed. A Cayley graph of a group G with respect to the subset S is a graph where its vertices are the elements of G and two vertices a and b are connected if ab^(−1) is in the subset S. The energy of a Cayley graph is the sum of all absolute values of the eigenvalues of its adjacency matrix. In this paper, we consider a specific subset S = {b, ab, . . . , a^(n−1)b} for dihedral group of order 2n, where n is greater or equal to 3 and find the Cayley graph with respect to the set. We also calculate the eigenvalues and compute the energy of the respected Cayley graphs. Finally, the generalization of the energy of the respected Cayley graphs is found.


10.37236/5240 ◽  
2016 ◽  
Vol 23 (3) ◽  
Author(s):  
István Estélyi ◽  
Tomaž Pisanski

For a finite group $G$ and subset $S$ of $G,$ the Haar graph $H(G,S)$ is a bipartite regular graph, defined as a regular $G$-cover of a dipole with $|S|$ parallel arcs labelled by elements of $S$. If $G$ is an abelian group, then $H(G,S)$ is well-known to be a Cayley graph; however, there are examples of non-abelian groups $G$ and subsets $S$ when this is not the case. In this paper we address the problem of classifying finite non-abelian groups $G$ with the property that every Haar graph $H(G,S)$ is a Cayley graph. An equivalent condition for $H(G,S)$ to be a Cayley graph of a group containing $G$ is derived in terms of $G, S$ and $\mathrm{Aut } G$. It is also shown that the dihedral groups, which are solutions to the above problem, are $\mathbb{Z}_2^2,D_3,D_4$ and $D_{5}$. 


Author(s):  
Tao Cheng ◽  
Lihua Feng ◽  
Guihai Yu ◽  
Chi Zhang

Classifying integral graphs is a hard problem that initiated by Harary and Schwenk in 1974. In this paper, with the help of character table, we treat the corresponding problem for Cayley graphs over the semi-dihedral group SD8n = ?a,b | a4n = b2 = 1; bab = a2n-1?, n ? 2. We present several necessary and sufficient conditions for the integrality of Cayley graphs over SD8n, we also obtain some simple sufficient conditions for the integrality of Cayley graphs over SD8n in terms of the Boolean algebra of hai. In particular, we give the sufficient conditions for the integrality of Cayley graphs over semi-dihedral groups SD2n (n?4) and SD8p for a prime p, from which we determine several infinite classes of integral Cayley graphs over SD2n and SD8p.


Filomat ◽  
2009 ◽  
Vol 23 (3) ◽  
pp. 93-101 ◽  
Author(s):  
Stefko Miklavic ◽  
Primoz Sparl

A connected graph ? of even order is n-extendable, if it contains a matching of size n and if every such matching is contained in a perfect matching of ?. Furthermore, a connected graph ? of odd order is n1/2-extendable, if for every vertex v of ? the graph ? - v is n-extendable. It is proved that every connected Cayley graph of an abelian group of odd order which is not a cycle is 1 1/2-extendable. This result is then used to classify 2-extendable connected Cayley graphs of generalized dihedral groups.


ISRN Algebra ◽  
2011 ◽  
Vol 2011 ◽  
pp. 1-6
Author(s):  
Mehdi Alaeiyan ◽  
Siamak Firouzian ◽  
Mohsen Ghasemi

A Cayley graph of a finite group is called normal edge transitive if its automorphism group has a subgroup which both normalizes and acts transitively on edges. In this paper we determine all cubic, connected, and undirected edge-transitive Cayley graphs of dihedral groups, which are not normal edge transitive. This is a partial answer to the question of Praeger (1999).


10.37236/9755 ◽  
2020 ◽  
Vol 27 (4) ◽  
Author(s):  
Štefko Miklavič ◽  
Primož Šparl

Let $G$ denote a finite generalized dihedral group with identity $1$ and let $S$ denote an inverse-closed subset of $G \setminus \{1\}$, which generates $G$ and for which there exists $s \in S$, such that $\langle S \setminus \{s,s^{-1}\} \rangle \ne G$. In this paper we obtain the complete classification of distance-regular Cayley graphs $\mathrm{Cay}(G;S)$ for such pairs of $G$ and $S$.


2007 ◽  
Vol 14 (02) ◽  
pp. 351-359 ◽  
Author(s):  
Chuixiang Zhou ◽  
Yan-Quan Feng

For a prime p, let D4p be the dihedral group 〈a,b | a2p = b2 = 1, b-1ab = a-1〉 of order 4p, and Cay (G,S) a connected cubic Cayley graph of order 4p. In this paper, it is shown that the automorphism group Aut ( Cay (G,S)) of Cay (G,S) is the semiproduct R(G) ⋊ Aut (G,S), where R(G) is the right regular representation of G and Aut (G,S) = {α ∈ Aut (G) | Sα = S}, except either G = D4p (p ≥ 3), Sβ = {b,ab,apb} for some β ∈ Aut (D4p) and [Formula: see text], or Cay (G,S) is isomorphic to the three-dimensional hypercube Q3[Formula: see text] and G = ℤ4 × ℤ2 or D8.


Author(s):  
Ashwin Sah ◽  
Mehtaab Sawhney ◽  
Yufei Zhao

Abstract Does every $n$-vertex Cayley graph have an orthonormal eigenbasis all of whose coordinates are $O(1/\sqrt{n})$? While the answer is yes for abelian groups, we show that it is no in general. On the other hand, we show that every $n$-vertex Cayley graph (and more generally, vertex-transitive graph) has an orthonormal basis whose coordinates are all $O(\sqrt{\log n / n})$, and that this bound is nearly best possible. Our investigation is motivated by a question of Assaf Naor, who proved that random abelian Cayley graphs are small-set expanders, extending a classic result of Alon–Roichman. His proof relies on the existence of a bounded eigenbasis for abelian Cayley graphs, which we now know cannot hold for general groups. On the other hand, we navigate around this obstruction and extend Naor’s result to nonabelian groups.


2021 ◽  
Vol 20 (3) ◽  
Author(s):  
Ying Liu ◽  
Jia-bin Yuan ◽  
Wen-jing Dai ◽  
Dan Li

Sign in / Sign up

Export Citation Format

Share Document