scholarly journals Vegetation mapping and estimation of the extent of near-surface permafrost in Mackenzie Delta, Northwest Territories

2007 ◽  
Author(s):  
Thai-Nguyen Nguyen
2005 ◽  
Vol 42 (1) ◽  
pp. 37-48 ◽  
Author(s):  
S V Kokelj ◽  
C R Burn

The soluble ion content of the active layer and near-surface permafrost was determined at 41 sites in the Mackenzie delta region, Northwest Territories, Canada. In delta soils, Ca2+ and Mg2+ are the dominant soluble cations, but the quantity and relative abundance of Na+ increase with proximity to the Beaufort Sea coast. Soils beneath frequently flooded surfaces are ion rich in comparison with ground above the level of decadal flooding. Within a terrain type, near-surface permafrost soil solute concentrations are similar between paired cores spaced <1 m apart, but at greater distances (cores spaced 3–13 m apart), solute concentrations are significantly different. Comparatively low soil solute concentrations in old upland surfaces near Inuvik may be a result of progressive removal of soluble materials from the active layer and permafrost during periods of deeper thaw. In sandy silt alluvium, solutes excluded during downward freezing may accumulate at the base of the active layer and be sequestered by a rising permafrost table. At sites with finer grained clayey silts, the correspondence between zones of ice and cation enrichment indicates coupled movement of water and solutes during freeze-back of the active layer and development of aggradational ice. Solute enrichment of near-surface permafrost is greatest at fine-grained ice-rich alluvial sites, where mean concentrations in permafrost are up to 7.5 times greater than those in the active layer.


1994 ◽  
Vol 31 (1) ◽  
pp. 182-191 ◽  
Author(s):  
C. R. Burn

Late Tertiary changes in the general circulation of the atmosphere, regionally enhanced by uplift of the Wrangell – Saint: Elias and Coast mountains, were sufficient to promote permafrost development in the western Arctic. Permafrost developed in Yukon Territory and adjacent Northwest Territories during early Pleistocene glacial periods, after continued tectonic activity led to further modification of regional climate, but degraded in the interglacials. Permafrost has been present in northern parts of the region since the Illinoian glaciation, but most ground ice in central Yukon formed in the Late Wisconsinan. The present interglacial is the only one with widespread evidence of permafrost, which is maintained in the valleys of central and southern Yukon by the Saint Elias Mountains blocking continental penetration of maritime air from the Gulf of Alaska. This reduces snow depth in winter, while cold-air drainage in the dissected terrain of the Yukon Plateaus enhances the near-surface inversion, leading to continental minimum temperatures. General circulation models used to simulate climate represent the physiography of northwest Canada crudely. As a result, the simulations are unable to reproduce conditions responsible for the development and preservation of permafrost in the region.


Sign in / Sign up

Export Citation Format

Share Document