scholarly journals Damping of self generated Alfvén waves in a partially ionized medium and the grammage of cosmic rays in the proximity of supernova remnants

2021 ◽  
Author(s):  
Sarah Recchia ◽  
Daniele Galli ◽  
Lara Nava ◽  
Marco Padovani ◽  
Stefano Gabici ◽  
...  
1994 ◽  
Vol 142 ◽  
pp. 841-844
Author(s):  
E. A. Dorfi

AbstractRecent numerical models for SNR evolution are presented, including first-order Fermi acceleration with injection of suprathermal particles at the shock wave, heating due to dissipation of Alfvén waves in the precursor region and radiative cooling of the thermal plasma. The X-ray fluxes obtained from these SNR models show significant differences depending on the acceleration efficiency of cosmic rays. γ-ray fluxes are calculated originating from π0-decay of pions generated by collisions of the high-energy particles with the thermal plasma. Cooling of the thermal plasma and dissipation of Alfvén waves in the precursor are important to determine the final amount of the explosion energy ESN which is transferred into cosmic rays.Subject headings: acceleration of particles — cosmic rays — gamma rays: theory — shock waves — supernova remnants


1984 ◽  
Vol 31 (2) ◽  
pp. 275-299 ◽  
Author(s):  
J. F. McKenzie ◽  
G. M. Webb

Hydrodynamical equations describing the mutual interaction of cosmic rays, thermal plasma, magnetic field and Alfvén waves scattering the cosmic rays used in cosmic ray shock acceleration theory (e.g. McKenzie & Völk 1982; Drury 1983; Webb 1983) are analysed for long-wavelength linear compressive instabilities. The Alfvén wave field may contain a pre-existing component as well as a component excited by the cosmic ray streaming instability. In the case of no Alfvén wave damping, adiabatic wave growth and Alfvén wave generation by the cosmic ray streaming instability, it is found that the backward propagating slow magneto-acoustic mode is driven convectively unstable by the pressure of the self-excited Alfvén waves, provided the thermal plasmaβis sufficiently large. The equations are also analysed for the case where the Alfvén wave growth is balanced by some nonlinear damping mechanisms. In the latter case both the forward and backward propagating slow magneto-acoustic modes may be driven unstable if the plasmaβis sufficiently small. The conditions under which the instabilities occur are delineated, and sample calculations of growth rates given. Possible applications of the instabilities to astrophysical situations are briefly discussed.


1994 ◽  
Vol 142 ◽  
pp. 969-973
Author(s):  
T. W. Jones

AbstractTime evolution of plane, cosmic-ray modified shocks has been simulated numerically for the case with parallel magnetic fields. Computations were done in a “three-fluid” dynamical model incorporating cosmic-ray and Alfvén-wave energy transport equations. Nonlinear feedback from the cosmic rays and Alfvén waves is included in the equation of motion for the underlying plasma, as is the finite propagation speed and energy dissipation of the Alfvén waves. Exploratory results confirm earlier, steady state analyses that found these Alfvén transport effects to be potentially important when the upstream Alfvén speed and gas sound speeds are comparable. As noted earlier, Alfvén transport effects tend to reduce the transfer of energy through a shock from gas to energetic particles. These studies show as well that the timescale for modification of the shock is altered in nonlinear ways. It is clear, however, that the consequences of Alfvén transport are strongly model dependent and that both advection of cosmic rays by the waves and dissipation of wave energy in the plasma will be important to model correctly when quantitative results are needed. Comparison is made between simulations based on a constant diffusion coefficient and more realistic diffusion models allowing the diffusion coefficient to vary in response to changes in Alfvén wave intensity. No really substantive differences were found between them.Subject headings: cosmic rays — MHD — shock waves


1961 ◽  
Vol 39 (8) ◽  
pp. 1197-1211 ◽  
Author(s):  
Tomiya Watanabe

The conditions for a wave, propagated in a partially ionized gas along an external magnetic field, to be of Alfvén type have been obtained.


Sign in / Sign up

Export Citation Format

Share Document