scholarly journals STABILITY ANALYSIS AND SEMI-ANALYTIC SOLUTION TO A SEIR-SEI MALARIA TRANSMISSION MODEL USING HE'S VARIATIONAL ITERATION METHOD

Authorea ◽  
2020 ◽  
Author(s):  
KINGSLEY AKINFE ◽  
ADEDAPO LOYINMI
Author(s):  
Kingsley Timilehin Akinfe ◽  
Adedapo Chris Loyinmi

We have considered a SEIR-SEI Vector-host mathematical model which captures malaria transmission dynamics, described and built on 7-dimensional nonlinear ordinary differential equations. We compute the basic reproduction number of the model; examine the positivity and boundedness of the model compartments in a region using well established methods viz: Cauchy’s differential theorem, Birkhoff & Rota’s theorem which verifies and reveals the well-posedness, and carrying capacity of the model respectively, the existence of the Disease-Free (DFE) and Endemic (EDE) equilibrium points were determined and examined. Using the Gaussian elimination method and the Routh-hurwitz criterion, we convey stability analyses at DFE and EDE points which indicates that the DFE (malaria-free) and the EDE (epidemic outbreak) point occurs when the basic reproduction number is less than unity (one) and greater than unity (one) respectively. We obtain a solution to the model using the Variational iteration method (VIM) (an unprecedented method) to each population compartments and verify the efficacy, reliability and validity of the proposed method by comparing the respective solutions via tables and combined plots with the computer in-built Runge-kutta-Felhberg of fourth-fifths order (RKF-45). We illustrate the combined plot profiles of each compartment in the model, showing the dynamic behavior of these compartments; then we speculate that VIM is efficient and capable to conduct analysis on Malaria models and other epidemiological models.


2010 ◽  
Vol 65 (5) ◽  
pp. 418-430 ◽  
Author(s):  
Ahmet Yildirim

In this paper, an application of He’s variational iteration method is applied to solve nonlinear integro-differential equations. Some examples are given to illustrate the effectiveness of the method. The results show that the method provides a straightforward and powerful mathematical tool for solving various nonlinear integro-differential equations


2019 ◽  
Vol 7 (2) ◽  
pp. 39
Author(s):  
V. K.Shchigolev

This work is devoted to the investigation of Friedmann-Robertson-Walker (FRW) cosmological models with the help of the so-called Variational Iteration Method (VIM). For this end, we briefly recall the main equations of the cosmological models and the basic idea of VIM. In order to approbate the VIM in FRW cosmology and demonstrate the main steps in solving by this method, we consider the test example of the universe with dust for which the exact solution of the model is known. Then, a solution for the spatially flat FRW model of the universe filled with the dust and quintessence is obtained when the exact analytic solution cannot be found. A comparison of our solution with the corresponding numerical solution shows that it is of a high degree of accuracy. Moreover, the Dynamical System Analysis to the dynamics of the homogeneous and isotropic FRW universes is used as a special case of generalized Lotka–Volterra system where the competitive species are the barotropic fluids filling the Universe. With the help of VIM, we have found the iterative formulae for the density parameters of the cosmological analog of the generalized Lotka–Volterra set of equations. All solutions illustrated graphically by means of Maple software.  


Sign in / Sign up

Export Citation Format

Share Document