scholarly journals Mechanical Circulatory Support as an Alternative Solution in Circumstances Leading to a Shortage of Organ Donors

Author(s):  
Yuriy Pya ◽  
Makhabbat Bekbossynova ◽  
Assel Medressova ◽  
Serik Bekbossynov ◽  
Saltanat Andossova ◽  
...  

Background. Mechanical circulatory support (MCS) has been applied as an effective therapy for patients with end stage heart failure (HF). The existing donor organ shortage issue in Kazakhstan, and hence long waiting times, have resulted in left ventricular assist device (LVAD) implantation being the predominant surgical treatment method for this condition. The purpose of this study is to analyze clinical outcomes of MCS program data in our Center. Methods. This study involves a retrospective analysis of 324 patients with different types of implantable MCS including LVAD (n=319), fully implantable LVAD (FIVAD, n=2), and total artificial heart (TAH, n=3). FIVAD and TAH cases were analyzed separately from other VAD types due to their small numbers. Results. Initially, LVADs were implanted as bridge-to-transplant (BTT) in 214 (67.1%) of patients and as a destination therapy (DT) in 105 (32.9%) cases, but only 30 (9.4%) patients proceeded to transplant. The overall survival rate of all LVAD patients at years 1, 2, 3, and 4 was 84.3%, 69.7%, 62.8%, and 52.5%, respectively. The distance from the clinic (Nur-Sultan) to patients’ cities of residence (average 1015 ± 668 kilometers) was not associated with patient survival. Conclusions. Developing MCS programs is crucial in providing care for patients with HF. Using LVAD as DT produced satisfactory outcomes with favorable survival rates, which are comparable to the outcomes reported in other studies. Further trials are needed to investigate the results of TAH and FIVAD implantation in order to establish them as an acceptable alternative treatment to heart transplantation.

Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Kara R Melmed ◽  
Konrad H Shlick ◽  
Brenda Rinsky ◽  
Shlee S Song ◽  
Patrick D Lyden

Background: Multiple types of mechanical circulatory support (MCS) devices are commonly used in heart failure patients. These devices carry risk for neurologic complications, specifically cardioembolic stroke. Alterations in blood flow play a role in the pathophysiology, however there is limited data regarding cerebrovascular hemodynamics in MCS patients. We used transcranial Doppler (TCD) to define hemodynamics of commonly used MCS devices. Methods: We retrospectively examined charts from 2/2013 through 6/2016 for patients with MCS who underwent TCD, and obtained the following: peak systolic,end-diastolic velocities, mean flow velocities, pulsatility indices (PI) and number of high-intensity transient signals (HITS). Waveform morphologies were compared between devices. Results: Of 1,796 TCDs studies screened, 62 TCD studies were from 32 MCS patients. Of these, 21 were on extracorporeal membrane oxygenation (ECMO), 15 had a left ventricular assist device (LVAD), 18 had total artificial heart (TAH), and 2 had intra-aortic balloon pumps (IABP). Waveforms in patients supported by ECMO demonstrated continuous flow without clear systolic peaks. The averaged mean MCA velocity was 57.57 (SD= 21.00) cm/sec and mean PI is 0.35 (0.17). LVAD averaged mean MCA velocity was 57.57 (14.38) cm/sec and mean PI of 0.45 (0.28). PIs were low in patients with continuous-flow LVADs. Impella patients had morphologically distinct pulsatile waveforms compared to other types of VADs. IABP had averaged mean velocity of 56.21 (14.78) cm/sec and mean PI of 0.77 (0.15). These waveforms demonstrated pronounced diastolic upstrokes not present in other devices. In TAH patients, mean MCA velocity was 73.69 (33.00) cm/sec and PI of 0.86 (0.40). Emboli detection was performed in 46 studies, and HITS were detected in 29 (63%). Of these 15 (51%) were administered 100% oxygen which suppressed >50% HITS in 10 (67%) patients. Conclusion: Patients supported by MCS devices produce unique and characteristic waveforms on TCD studies. Further studies will describe normative values in this special population. HITS were not universally present and intermittently suppressible by oxygen, suggesting some may be gaseous in nature. Risk of stroke in patients with MCS and HITS is under study.


2021 ◽  
Vol 32 (4) ◽  
pp. 424-433
Author(s):  
Emalie Petersen

Heart failure is a leading cause of morbidity and mortality in the United States. Treatment of this condition increasingly involves mechanical circulatory support devices. Even with optimal medical therapy and use of simple cardiac devices, heart failure often leads to reduced quality of life and a shortened life span, prompting exploration of more advanced treatment approaches. Left ventricular assist devices constitute an effective alternative to cardiac transplantation. These devices are not without complications, however, and their use requires careful cooperative management by the patient’s cardiology team and primary care provider. Left ventricular assist devices have undergone many technological advancements since they were first introduced, and they will continue to evolve. This article reviews the history of different types of left ventricular assist devices, appropriate patient selection, and common complications in order to increase health professionals’ familiarity with these treatment options.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Toru Kondo ◽  
Naoki Shibata ◽  
shingo kazama ◽  
Yuki Kimura ◽  
Hideo Oishi ◽  
...  

Background: In cardiogenic shock refractory to medical treatment, choosing and changing mechanical circulatory support to stabilize hemodynamics until cardiac recovery or next treatment is a strategic cornerstone for improving the outcome. We aimed to clarify the differences in treatment course and outcome between Impella 5.0 and extracorporeal left ventricular assist device (eLVAD) in patients with cardiogenic shock refractory to medical therapy or other mechanical circulatory support. Methods: We performed a retrospective medical record review of consecutive patients who were treated with Impella 5.0 or eLVAD as a bridge to decision (BTD) at our medical center from December 2011 to January 2020. Results: A total of 26 patients (median age 40 years, 16 males) were analyzed. Of seven patients managed with Impella 5.0, one patients used Impella CP and four patients used peripheral veno-arterial extracorporeal membrane oxygenation (VA-ECMO) before Impella 5.0 implantation. On the other hand, of 19 patients managed with eLVAD, 11 patients used VA-ECMO before eLVAD implantation. In patients managed with Impella 5.0, Impella 5.0 was removed successfully in two patients (29%) and four patients (71%) underwent the operation for durable LVAD. In patients managed with eLVAD, eLVAD was successfully removed in three patients (16%), nine patients (47%) required durable LVAD, and seven patients (37%) died during eLVAD management. The period between implantation of Impella 5.0 or eLVAD to durable LVAD surgery was significantly shorter with Impella 5.0 (58 [38 - 95] vs. 235 [126 - 318] days, p=0.001). During durable LVAD implantation, cardiopulmonary bypass time was significantly shorter and a significantly smaller amount of red blood cells transfusion was required with Impella 5.0 (149 [125 - 182] vs. 192 [170 - 250] minutes, p=0.042; 7.0 [5.0 - 9.5] vs. 15.0 [10.0- 2.0] units, p=0.019, respectively). There were 4 massive stroke events in eLVAD, but no massive stroke events in Impella 5.0. In Impella 5.0. Conclusions: Impella 5.0 facilitates smoother management as a BTD and reduces surgical invasiveness during durable LVAD implantation. Impella 5.0 would be a more effective option for success to cardiac recovery or next therapy than eLVAD.


Author(s):  
Madeleine L. Townsend ◽  
Sara Sadat-Hossieny ◽  
Samir Q. Latifi ◽  
Gerard Boyle ◽  
Alistair Phillips

We report the unique case of a 2-year-old male with severe heart failure requiring mechanical circulatory support with a left ventricular assist device, who developed adenovirus pneumonitis infection requiring veno-venous extracorporeal membrane oxygenation (ECMO) support. He progressed to acute respiratory failure and refractory hypoxemia despite intubation with maximum respiratory support. The patient was placed on ECMO with improvement in lung function over four days with subsequent successful decannulation. During the ECMO run, anticoagulation required escalation given the increased circuit surface area. Patient has since recovered and undergone heart transplantation.


2020 ◽  
Vol 13 (10) ◽  
Author(s):  
Claudia Frankfurter ◽  
Micaela Molinero ◽  
Julie K.K. Vishram-Nielsen ◽  
Farid Foroutan ◽  
Susanna Mak ◽  
...  

Background: Right ventricular failure (RVF) is a cause of major morbidity and mortality after left ventricular assist device (LVAD) implantation. It is, therefore, integral to identify patients who may benefit from biventricular support early post-LVAD implantation. Our objective was to explore the performance of risk prediction models for RVF in adult patients undergoing LVAD implantation. Methods: A systematic search was performed on Medline, Embase, Cochrane Central Register of Controlled Trials, and Cochrane Database of Systematic Reviews from inception until August 2019 for all relevant studies. Performance was assessed by discrimination (via C statistic) and calibration if reported. Study quality was assessed using the Prediction Model Risk of Bias Assessment Tool criteria. Results: After reviewing 3878 citations, 25 studies were included, featuring 20 distinctly derived models. Five models were derived from large multicenter cohorts: the European Registry for Patients With Mechanical Circulatory Support, Interagency Registry for Mechanically Assisted Circulatory Support, Kormos, Pittsburgh Bayesian, and Mechanical Circulatory Support Research Network RVF models. Seventeen studies (68%) were conducted in cohorts implanted with continuous-flow LVADs exclusively. The definition of RVF as an outcome was heterogenous among models. Seven derived models (28%) were validated in at least 2 cohorts, reporting limited discrimination (C-statistic range, 0.53–0.65). Calibration was reported in only 3 studies and was variable. Conclusions: Existing RVF prediction models exhibit heterogeneous derivation and validation methodologies, varying definitions of RVF, and are mostly derived from single centers. Validation studies of these prediction models demonstrate poor-to-modest discrimination. Newer models are derived in cohorts implanted with continuous-flow LVADs exclusively and exhibit modest discrimination. Derivation of enhanced discriminatory models and their validations in multicenter cohorts is needed.


Sign in / Sign up

Export Citation Format

Share Document