Abstract
For children born with a single functional ventricle, the Fontan operation bypasses the right ventricle by forming a four-way total cavopulmonary connection adapting the existing ventricle for the systemic circulation. However, upon adulthood, many Fontan patients exhibit low cardiac output and elevated venous pressure, eventually requiring a heart transplantation. Despite efforts to develop a Fontan pump or use an existing ventricular assist device for failing Fontan support, there is still no device designed or tested for subpulmonary support. Penn State University is developing a hydrodynamically levitated Fontan circulatory assist device (FCAD) for bridge-to-transplant or destination therapy. The FCAD hemodynamics, at both steady and pulsatile conditions for three pump operating conditions, were quantified using particle image velocimetry to determine the velocity magnitudes and Reynolds normal and shear stresses. Data were acquired at three planes (0 mm and ±25% of the radius) for the inferior and superior vena cavae inlets and the pulmonary artery outlet. The inlets had a blunt velocity profile that became skewed towards the collecting volute as fluid approached the rotor. At the outlet, regardless of the flow condition, a high-velocity jet exited the volute and moved downstream in a helical pattern. Turbulent stresses observed at the volute exit were influenced by the rotor's rotation. Regardless of inlet conditions, the pump demonstrated advantageous behavior for clinical use with a predictable flow field and a low risk of platelet adhesion and hemolysis based on calculated wall shear rates and turbulent stresses, respectively.