scholarly journals Can the re-infiltration process be ignored for flood inundation mapping and prediction during extreme storms?

Author(s):  
Zhi Li ◽  
Mengye Chen ◽  
Shang Gao ◽  
Berry Wen ◽  
Jonathan Gourley ◽  
...  

Coupled Hydrologic & Hydraulic (H&H) models have been widely applied to simulate both discharge and flood inundation due to their complementary advantages, yet the H&H models oftentimes suffer from one-way and weak coupling and particularly disregarded run-on infiltration or re-infiltration. This could compromise the model accuracy, such as under-prediction (over-prediction) of subsurface water contents (surface runoff). In this study, we examine the H&H model performance differences between the scenarios with and without re-infiltration process in extreme events¬ – 100-year design rainfall and 500-year Hurricane Harvey event – from the perspective of flood depth, inundation extent, and timing. Results from both events underline that re-infiltration manifests discernable impacts and non-negligible differences for better predicting flood depth and extents, flood wave timings, and inundation durations. Saturated hydraulic conductivity and antecedent soil moisture are found to be the prime contributors to such differences. For the Hurricane Harvey event, the model performance is verified against stream gauges and high water marks, from which the re-infiltration scheme increases the Nash Sutcliffe Efficiency score by 140% on average and reduces maximum depth differences by 17%. This study highlights that the re-infiltration process should not be disregarded even in extreme flood simulations. Meanwhile, the new version of the H&H model – the Coupled Routing and Excess STorage inundation MApping and Prediction (CREST-iMAP) Version 1.1, which incorporates such two-way coupling and re-infiltration scheme, is released for public access.

2018 ◽  
Vol 22 (11) ◽  
pp. 5967-5985 ◽  
Author(s):  
Cédric Rebolho ◽  
Vazken Andréassian ◽  
Nicolas Le Moine

Abstract. The production of spatially accurate representations of potential inundation is often limited by the lack of available data as well as model complexity. We present in this paper a new approach for rapid inundation mapping, MHYST, which is well adapted for data-scarce areas; it combines hydraulic geometry concepts for channels and DEM data for floodplains. Its originality lies in the fact that it does not work at the cross section scale but computes effective geometrical properties to describe the reach scale. Combining reach-scale geometrical properties with 1-D steady-state flow equations, MHYST computes a topographically coherent relation between the “height above nearest drainage” and streamflow. This relation can then be used on a past or future event to produce inundation maps. The MHYST approach is tested here on an extreme flood event that occurred in France in May–June 2016. The results indicate that it has a tendency to slightly underestimate inundation extents, although efficiency criteria values are clearly encouraging. The spatial distribution of model performance is discussed and it shows that the model can perform very well on most reaches, but has difficulties modelling the more complex, urbanised reaches. MHYST should not be seen as a rival to detailed inundation studies, but as a first approximation able to rapidly provide inundation maps in data-scarce areas.


2021 ◽  
Author(s):  
Zhouyayan Li ◽  
Ibrahim Demir

It is critical to obtain accurate flood extent predictions in a timely manner in order to reduce flood-related casualties and economic losses. Running a real-time flood inundation mapping model is a critical step in supporting quick flood response decisions. Most inundation systems, on the other hand, are either overly demanding in terms of data and computing power or have limited interaction and customization with various input and model configurations. This paper describes a client-side web-based real-time inundation mapping system based on the Height Above the Nearest Drainage (HAND) model. The system includes tools for hydro-conditioning terrain data, modifying terrain data, custom inundation mapping, online model performance evaluation, and hydro-spatial analyses. Instead of only being able to work on a few preprocessed datasets, the system is ready to run in any region of the world with limited data needs (i.e., elevation). With the system's multi-depth inundation mapping approach, we can use water depth measurements (sensor-based or crowdsourced) or model predictions to generate more accurate and realistic flood inundation maps based on current or future conditions. All of the system's functions can be performed entirely through a client-side web browser, without the need for GIS software or server-side computing. For decision-makers and the general public with limited technical backgrounds, the system provides a one-stop, easy-to-use flood inundation modeling and analysis tool.


2018 ◽  
Author(s):  
Cédric Rebolho ◽  
Vazken Andréassian ◽  
Nicolas Le Moine

Abstract. The production of spatially accurate representations of potential inundation is often limited by the lack of available data as well as model complexity. We present in this paper a new approach for rapid inundation mapping, MHYST, which is well adapted for data-scarce areas; it is based on hydraulic geometry concepts for channels, and on DEM data for floodplains. Its originality lies in the fact that it does not work at the cross section scale but computes effective geometrical properties to describe the reach scale. Combining reach-scale geometrical properties with 1-D steady-state flow equations, MHYST computes a topographically coherent relation between the Height Above Nearest Drainage and streamflow. This relation can then be used on a past or future event and produce inundation maps. The MHYST approach is tested here on an extreme flood event that occurred in France in May–June 2016. The results indicate that it has a tendency to slightly underestimate inundation extents, although efficiency criteria values are clearly encouraging. The spatial distribution of model performance is discussed and it shows that the model can perform very well on most reaches, but has difficulties modelling the more complex, urbanised reaches. MHYST should not be seen as a rival to detailed inundation studies, but as a first approximation able to rapidly provide inundation maps in data-scarce areas.


2020 ◽  
Author(s):  
Nabil Hocini ◽  
Olivier Payrastre ◽  
François Bourgin ◽  
Eric Gaume ◽  
Philippe Davy ◽  
...  

Abstract. Flash floods observed in headwater catchments often cause catastrophic material and human damage worldwide. Considering the large number of small watercourses possibly affected, the use of automated methods for flood inundation mapping at a regional scale can be of great help for the identification of threatened areas and the prediction of potential impacts of these floods. An application of three mapping methods of increasing level of complexity (HAND/MS, caRtino 1D, and Floodos 2D) is presented herein. These methods are used to estimate the flooded areas of three major flash floods observed during the last ten years in South-Eastern France: the 15th of June 2010 flood on the Argens river and its tributaries (585 km of river reaches), the 3rd of October 2015 flood on small coastal rivers of the French Riviera (131 km of river reaches) and the 15th of October 2018 floods on the Aude river and its tributaries (561 km of river reaches). The common features of the three mapping approaches are their high level of automation, their application based on a high-resolution (5 m) DTM, and their reasonable computation times. Hydraulic simulations are run in steady-state regime, based on peak discharges estimated using a rainfall-runoff model preliminary adjusted for each event. The simulation results are compared with the reported flood extent maps and the high water level marks. A clear grading of the tested methods is revealed, illustrating some limits of the HAND/MS approach and an overall better performance of hydraulic models solving the shallow water equations. With these methods, the inundated areas are overall well retrieved, and the errors on water levels remain mostly below 80 cm for the 2D Floodos approach. The most important remaining errors are related to limits of the digital elevation model such as the lack of bathymetric information, uncertainties on embankment elevation and to possible bridge blockages not accounted for in the models.


Author(s):  
Heather McGrath ◽  
Jean-Samuel Proulx-Bourque ◽  
Jean-Francois Bourgon ◽  
Miroslav Nastev ◽  
Ahmed Abo El Ezz

2005 ◽  
Vol 2 (3) ◽  
pp. 639-690 ◽  
Author(s):  
G. P. Zhang ◽  
H. H. G. Savenije

Abstract. Based on the Representative Elementary Watershed (REW) approach, the modelling tool REWASH (Representative Elementary WAterShed Hydrology) has been developed and applied to the Geer river basin. REWASH is deterministic, semi-distributed, physically based and can be directly applied to the watershed scale. In applying REWASH, the river basin is divided into a number of sub-watersheds, so called REWs, according to the Strahler order of the river network. REWASH describes the dominant hydrological processes, i.e. subsurface flow in the unsaturated and saturated domains, and overland flow by the saturation-excess and infiltration-excess mechanisms. Through flux exchanges among the different spatial domains of the REW, surface and subsurface water interactions are fully coupled. REWASH is a parsimonious tool for modelling watershed hydrological response. However, it can be modified to include more components to simulate specific processes when applied to a specific river basin where such processes are observed or considered to be dominant. In this study, we have added a new component to simulate interception using a simple parametric approach. Interception plays an important role in the water balance of a watershed although it is often disregarded. In addition, a refinement for the transpiration in the unsaturated zone has been made. Finally, an improved approach for simulating saturation overland flow by relating the variable source area to both the topography and the groundwater level is presented. The model has been calibrated and verified using a 4-year data set, which has been split into two for calibration and validation. The model performance has been assessed by multi-criteria evaluation. This work is the first full application of the REW approach to watershed rainfall-runoff modelling in a real watershed. The results demonstrate that the REW approach provides an alternative blueprint for physically based hydrological modelling.


2020 ◽  
Vol 8 (5) ◽  
pp. 1989-1992
Author(s):  
Vinay Khalkho ◽  
Dr. Alex Thomas ◽  
Manmohan Singh ◽  
Shilpi Dadel

Sign in / Sign up

Export Citation Format

Share Document