scholarly journals Predicting changes in molluscan spatial distributions in mangrove forests in response to sea-level rise

Author(s):  
Wei Ma ◽  
Mao Wang ◽  
Haifeng Fu ◽  
Chaoyi Tang ◽  
Wenqing Wang

Molluscs are an important component of the mangrove ecosystem, and the vertical distributions of molluscan species in this ecosystem are primarily dictated by tidal inundation. Thus, sea-level rise (SLR) may have profound effects on mangrove mollusc communities. Here, we used two dynamic empirical models based on measurements of surface elevation change, sediment accretion and zonation patterns of molluscs to predict changes in molluscan spatial distributions in response to different sea-level rise rates in the mangrove forests of Zhenzhu Bay (Guangxi, China). The change in surface elevation was 4.76–9.61 mm a during the study period (2016–2020), and the magnitude of surface-elevation change decreased exponentially as original surface elevation increased. Based on our model results, we predicted that mangrove molluscs might successfully adapt to a low rate of SLR (marker-horizon model: 2–4.57 mm a; plate model: 2–5.20 mm a) by 2100, with molluscs moving seaward and those in the lower intertidal zones expanding into newly available zones. However, as SLR rate increased (marker-horizon model: 4.57–8.14 mm a; plate model: 5.20–6.88 mm a), our models predicted that surface elevations would decrease beginning in the high intertidal zones and gradually spreading to the low intertidal zones. Finally, at high rates of SLR (marker-horizon model: 8.14–16.00 mm a; plate model: 6.88–16.00 mm a), surface elevations were predicted to decrease across the elevation gradient, with molluscs moving landward and species in higher intertidal zones would be blocked by landward barriers. Tidal inundation and the consequent increase in interspecific competition and predation pressure were predicted to threaten the survival of many molluscan groups in higher intertidal zones, especially species at the landward edge of the mangroves. Thus, future efforts to conserve mangrove floral and faunal diversity should prioritize species restricted to landward mangrove areas.

Sci ◽  
2020 ◽  
Vol 2 (3) ◽  
pp. 51
Author(s):  
Edwin J. Bomer ◽  
Carol A. Wilson ◽  
Tracy Elsey-Quirk

The conservation of coastal wetland ecosystems, like mangrove forests and salt marshes, represents a critical strategy for mitigating atmospheric emissions and climate change in the 21st century. Yet the existence of these environments is threatened by human-induced disturbances, namely deforestation and accelerated sea-level rise. Coastal systems maintain surface elevation in response to sea-level rise through a combination of physical and biological processes both above and below the ground surface. The quantification and relative contribution of belowground process controls (e.g., seasonal water content, organic matter decomposition) on surface elevation change is largely unexplored but crucial for informing coastal ecosystem sustainability. To address this knowledge deficit, we integrated measurements of surface elevation change of the live root zone (0.5 to 1 m depth) with geotechnical data from co-located sediment cores in the Sundarbans mangrove forest (SMF) of southwest Bangladesh. Core data reveal that the primary belowground controls on surface elevation change include seasonal fluctuations in pore-water content and the relative abundance of fine-grained sediments capable of volumetric expansion and contraction, supporting an elevation gain of ~2.42 ± 0.26 cm yr−1. In contrast to many mangrove environments, the soils of the SMF contain little organic matter and are dominantly composed (>90%) of inorganic clastic sediments. The mineral-rich soil texture likely leads to less compaction-induced subsidence as compared to organic-rich substrates and facilitates surface equilibrium in response to sea level rise. Despite a relatively high soil bulk density, soil carbon (C) density of the SMF is very low owing to the dearth of preserved organic content. However, rates of C accumulation are balanced out by locally high accretion rates, rendering the SMF a greater sink of terrestrial C than the worldwide mangrove average. The findings of this study demonstrate that C accumulation in the SMF, and possibly other alluvial mangrove forests, is highly dependent on the continued delivery of sediment to the mangrove platform and associated settings.


Sci ◽  
2020 ◽  
Vol 2 (3) ◽  
pp. 54
Author(s):  
Edwin J. Bomer ◽  
Carol A. Wilson ◽  
Tracy Elsey-Quirk

The conservation of coastal wetland ecosystems, like mangrove forests and salt marshes, represents a critical strategy for mitigating atmospheric emissions and climate change in the 21st century. Yet the existence of these environments is threatened by human-induced disturbances, namely deforestation and accelerated sea-level rise. Coastal systems maintain surface elevation in response to sea-level rise through a combination of physical and biological processes both above and below the ground surface. The quantification and relative contribution of belowground process controls (e.g., seasonal water content, organic matter decomposition) on surface elevation change is largely unexplored but crucial for informing coastal ecosystem sustainability. To address this knowledge deficit, we integrated measurements of surface elevation change of the live root zone (0.5 to 1 m depth) with geotechnical data from co-located sediment cores in the Sundarbans mangrove forest (SMF) of southwest Bangladesh. Core data reveal that the primary belowground controls on surface elevation change include seasonal fluctuations in pore-water content and the relative abundance of fine-grained sediments capable of volumetric expansion and contraction, supporting an elevation gain of ~2.42 ± 0.26 cm year−1. In contrast to many mangrove environments, the soils of the SMF contain little organic matter and are dominantly composed (>90%) of inorganic clastic sediments. The mineral-rich soil texture likely leads to less compaction-induced subsidence as compared to organic-rich substrates and facilitates surface equilibrium in response to sea level rise. Despite a relatively high soil bulk density, soil carbon (C) density of the SMF is very low owing to the dearth of preserved organic content. However, rates of C accumulation are balanced out by locally high accretion rates, rendering the SMF a greater sink of terrestrial C than the worldwide mangrove average. The findings of this study demonstrate that C accumulation in the SMF, and possibly other alluvial mangrove forests, is highly dependent on the continued delivery of sediment to the mangrove platform and associated settings.


Sci ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 35
Author(s):  
Edwin J. Bomer ◽  
Carol A. Wilson ◽  
Tracy Elsey-Quirk

The conservation of coastal wetland ecosystems, like mangrove forests and salt marshes, represents a critical strategy for mitigating atmospheric emissions and climate change in the 21st century. Yet the existence of these environments is threatened by human-induced disturbances, namely deforestation and accelerated sea-level rise. Coastal systems maintain surface elevation in response to sea-level rise through a combination of physical and biological processes both above and below the ground surface. The quantification and relative contribution of belowground process controls (e.g., seasonal water content, organic matter decomposition) on surface elevation change is largely unexplored but crucial for informing coastal ecosystem sustainability. To address this knowledge deficit, we integrated measurements of surface elevation change of the live root zone (0.5 to 1 m depth) with geotechnical data from co-located sediment cores in the Sundarbans mangrove forest (SMF) of southwest Bangladesh. Core data reveal that the primary belowground controls on surface elevation change include seasonal fluctuations in pore-water content and the relative abundance of fine-grained sediments capable of volumetric expansion and contraction. In contrast to many mangrove environments, the soils of the SMF contain little organic matter and are dominantly composed (>90%) of inorganic clastic sediments. The mineral-rich soil texture likely leads to less compaction-induced subsidence as compared to organic-rich substrates and facilitates surface equilibrium in response to sea level rise. Despite a relatively high soil bulk density, soil carbon (C) density of the SMF is very low owing to the dearth of preserved organic content. However, rates of C accumulation are balanced out by locally high accretion rates, rendering the SMF a greater sink of terrestrial C than the worldwide mangrove average. The findings of this study demonstrate that C accumulation in the SMF, and possibly other alluvial mangrove forests, is highly dependent on the continued delivery of sediment to the mangrove platform and associated settings.


2017 ◽  
Vol 27 (5) ◽  
pp. 810-817 ◽  
Author(s):  
Guodong Wang ◽  
Ming Wang ◽  
Ming Jiang ◽  
Xianguo Lyu ◽  
Xingyuan He ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Kerrylee Rogers ◽  
Neil Saintilan

The fate of coastal wetlands and their ecosystem services is dependent upon maintaining substrate elevations within a tidal frame that is influenced by sea-level rise. Development and application of morphodynamic models has been limited as few empirical studies have measured the contribution of key processes to surface elevation change, including mineral and organic matter addition, autocompaction of accumulating sediments and deep subsidence. Accordingly, many models presume that substrates are in equilibrium with relative sea-level rise (RSLR) and the composition of substrates are relatively homogenous. A 20-year record of surface elevation change and vertical accretion from a large tidal embayment in Australia coupled with analyses of inundation frequency and the character of sediments that have accumulated above mean sea level was analyzed to investigate processes influencing surface elevation adjustment. This study confirms the varying contribution of addition, decomposition and compression of organic material, and mineral sediment consolidation. Autocompaction of substrates was proportional to the overburden of accumulating sediments. These processes operate concurrently and are influenced by sediment supply and deposition. Vertical accretion was linearly related to accommodation space. Surface elevation change was related to vertical accretion and substrate organic matter, indicated by carbon storage above mean sea level. Surface elevation change also conformed to models that initially increase and then decrease as accommodation space diminishes. Rates of surface elevation change were largely found to be in equilibrium with sea-level rise measured at the nearest tide gauge, which was estimated at 3.5 mm y–1 over the period of measurements. As creation of new accommodation space with sea-level rise is contrary to the longer-term history of relative sea-level stability in Australia since the mid-Holocene, striking stratigraphic variation arises with deeper sediments dominated by mineral sands and surficial sediments increasingly fine grained and having higher carbon storage. As the sediment character of substrates was found to influence rates of surface elevation gain, we caution against the unqualified use of models derived from the northern hemisphere where substrates have continuously adjusted to sea-level rise and sediment character is likely to be more homogenous.


2021 ◽  
Author(s):  
Kerrylee Rogers ◽  
Neil Saintilan

<p>The resilience of coastal wetlands in the fate of sea-level rise is proposed to be related to the combined influence of changes in substrate organic matter volume, mineral sediment volume, auto-compaction of accumulating material and deep subsidence; however, relatively few studies have measured all of these variables. In addition, there is ongoing debate about the suitability of this data for modelling the behaviour of coastal wetlands under anticipated sea-level rise projections as temporal discrepancies in the elevation response of coastal wetlands derived from observational and stratigraphic records exist. To resolve these issues, data derived from a range of techniques sensitive to changes occurring at annual, decadal and century timescales, is presented in the context of available accommodation space, that is, the space in which tidally-borne material can accumulate. Focussing on an embayment in Victoria, Australia, analyses confirm that at annual-decadal timescales, organic matter behaves like a sponge, compressing as the overburden of material accumulates, resulting in auto-compaction that modulates the degree of surface elevation change that occurs as tidally-borne material accumulates. These processes operate concurrently and are influenced by sediment availability, yet vary on the basis of available accommodation space. At longer timescales, the influence of auto-compaction diminishes as organic matter has undergone significant compression and decomposition, yet accumulated material remains proportional to available accommodation space. These analyses confirm that temporal discrepancies in rates of substrate elevation change can be resolved by accounting for the timescale over which processes operate and the influence of sea-level rise on available accommodation space. Accordingly, models should dynamically consider rates of surface elevation change relative to available accommodation space.</p>


Ecosystems ◽  
2010 ◽  
Vol 13 (1) ◽  
pp. 129-143 ◽  
Author(s):  
Ken W. Krauss ◽  
Donald R. Cahoon ◽  
James A. Allen ◽  
Katherine C. Ewel ◽  
James C. Lynch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document