salt marshes
Recently Published Documents


TOTAL DOCUMENTS

1744
(FIVE YEARS 395)

H-INDEX

81
(FIVE YEARS 9)

2022 ◽  
Vol 8 ◽  
Author(s):  
Yiquan Yuan ◽  
Xiuzhen Li ◽  
Zuolun Xie ◽  
Liming Xue ◽  
Bin Yang ◽  
...  

Blue carbon (C) ecosystems (mangroves, salt marshes, and seagrass beds) sequester high amounts of C, which can be respired back into the atmosphere, buried for long periods, or exported to adjacent ecosystems by tides. The lateral exchange of C between a salt marsh and adjacent water is a key factor that determines whether a salt marsh is a C source (i.e., outwelling) or sink in an estuary. We measured salinity, particulate organic carbon (POC), and dissolved organic carbon (DOC) seasonally over eight tidal cycles in a tidal creek at the Chongming Dongtan wetland from July 2017 to April 2018 to determine whether the marsh was a source or sink for estuarine C. POC and DOC fluxes were significantly correlated in the four seasons driven by water fluxes, but the concentration of DOC and POC were positively correlated only in autumn and winter. DOC and POC concentrations were the highest in autumn (3.54 mg/L and 4.19 mg/L, respectively) and the lowest in winter and spring (1.87 mg/L and 1.51 mg/L, respectively). The tidal creek system in different seasons showed organic carbon (OC) export, and the organic carbon fluxes during tidal cycles ranged from –12.65 to 4.04 g C/m2. The intensity showed significant seasonal differences, with the highest in summer, the second in autumn, and the lowest in spring. In different seasons, organic carbon fluxes during spring tides were significantly higher than that during neap tides. Due to the tidal asymmetry of the Yangtze River estuary and the relatively young stage, the salt marshes in the study area acted as a strong lateral carbon source.


2022 ◽  
Author(s):  
Matthew Madewell ◽  
Rusty Feagin ◽  
Thomas Huff ◽  
Bill Balboa

Abstract Salt marshes can be vulnerable to reduced freshwater input. Reduced freshwater inflows, particularly during a hot or dry summer season, can be catastrophic for vegetation productivity, organic accretion and inorganic sedimentation, and the ability of a marsh to maintain a sustainable elevation facing relative sea level rise (RSLR). Unfortunately, it is challenging for scientists to obtain inflow records for ungauged watersheds and link them with historical trends of salt marsh loss. We sought to address this challenge in Big Boggy National Wildlife Refuge (NWR), a small watershed in East Matagorda Bay, Texas. Our objective was to link the quantity of freshwater inflow with salt marsh sustainability and recommend management actions for the NWR. We first explored land cover trends and found that this watershed lost more than one-third of its low marsh since 1953. We then measured the streamflow into and out of the watershed, created a water budget, and modeled historical and future inflows from 1953 to 2100. Freshwater inflows have been increasing on average since 1953, but a combination of RSLR, sediment starvation, and punctuated seasonal droughts are likely responsible for the loss of salt marsh. We also estimated supplemental water needs during potential droughts out to 2100. We conclude that managers cannot fundamentally alter the accretion versus RSLR balance in this basin except by modifying freshwater input. Thus, during droughts, they should focus on providing these inputs and avoiding vegetation loss. Our work points to both water purchases and land management options that can achieve this goal.


2022 ◽  
Author(s):  
Anna Elizabeth Løvgren Graversen ◽  
Gary T. Banta ◽  
Pere Masque ◽  
Dorte Krause‐Jensen

Author(s):  
Alice F. Besterman ◽  
Rachel W. Jakuba ◽  
Wenley Ferguson ◽  
Diana Brennan ◽  
Joseph E. Costa ◽  
...  

Author(s):  
Helen Brooks ◽  
Iris Moeller ◽  
Tom Spencer ◽  
Katherine Royse ◽  
Simon Price ◽  
...  

Author(s):  
Selina L. Cheng ◽  
Kinsey N. Tedford ◽  
Rachel S. Smith ◽  
Sean Hardison ◽  
Michael R. Cornish ◽  
...  

AbstractBlue crabs (Callinectes sapidus) are highly mobile, ecologically-important mesopredators that support multimillion-dollar fisheries along the western Atlantic Ocean. Understanding how blue crabs respond to coastal landscape change is integral to conservation and management, but such insights have been limited to a narrow range of habitats and spatial scales. We examined how local-scale to landscape-scale habitat characteristics and bathymetric features (channels and oceanic inlets) affect the relative abundance (catch per unit effort, CPUE) of adult blue crabs across a > 33 km2 seagrass landscape in coastal Virginia, USA. We found that crab CPUE was 1.7 × higher in sparse (versus dense) seagrass, 2.4 × higher at sites farther from (versus nearer to) salt marshes, and unaffected by proximity to oyster reefs. The probability that a trapped crab was female was 5.1 × higher in sparse seagrass and 8 × higher near deep channels. The probability of a female crab being gravid was 2.8 × higher near seagrass meadow edges and 3.3 × higher near deep channels. Moreover, the likelihood of a gravid female having mature eggs was 16 × greater in sparse seagrass and 32 × greater near oceanic inlets. Overall, we discovered that adult blue crab CPUE is influenced by seagrass, salt marsh, and bathymetric features on scales from meters to kilometers, and that habitat associations depend on sex and reproductive stage. Hence, accelerating changes to coastal geomorphology and vegetation will likely alter the abundance and distribution of adult blue crabs, challenging marine spatial planning and ecosystem-based fisheries management.


2022 ◽  
Vol 22 (1) ◽  
pp. 1-22
Author(s):  
Christopher H. Lashley ◽  
Sebastiaan N. Jonkman ◽  
Jentsje van der Meer ◽  
Jeremy D. Bricker ◽  
Vincent Vuik

Abstract. Many coastlines around the world are protected by dikes with shallow foreshores (e.g. salt marshes and mudflats) that attenuate storm waves and are expected to reduce the likelihood and volume of waves overtopping the dikes behind them. However, most of the studies to date that assessed their effectiveness have excluded the influence of infragravity (IG) waves, which often dominate in shallow water. Here, we propose a modular and adaptable framework to estimate the probability of coastal dike failure by overtopping waves (Pf). The influence of IG waves on overtopping is included using an empirical approach, which is first validated against observations made during two recent storms (2015 and 2017). The framework is then applied to compare the Pf values of the dikes along the Dutch Wadden Sea coast with and without the influence of IG waves. Findings show that including IG waves results in 1.1 to 1.6 times higher Pf values, suggesting that safety is overestimated when they are neglected. This increase is attributed to the influence of the IG waves on the design wave period and, to a lesser extent, the wave height at the dike toe. The spatial variation in this effect, observed for the case considered, highlights its dependence on local conditions – with IG waves showing greater influence at locations with larger offshore waves, such as those behind tidal inlets, and shallower water depths. Finally, the change in Pf due to the IG waves varied significantly depending on the empirical wave overtopping model selected, emphasizing the importance of tools developed specifically for shallow foreshore environments.


2022 ◽  
Author(s):  
Hongyu Feng ◽  
Yajun Qiao ◽  
Lu Xia ◽  
Wen Yang ◽  
Yongqiang Zhao ◽  
...  

Abstract Aims: Although the influences of coastal embankments on physicochemical soil properties and carbon (C) and nitrogen (N) cycling have been widely studied, the mechanisms of their effects on soil microbial ecologies remain poorly understood. Thus, the aim of this study was to investigate variations in the diversity and composition of soil bacterial and archaeal communities between natural and embanked saltmarshes, as well as the determinants that drive these variations.Methods: 16S rRNA gene sequence analysis was performed to assess the impacts of embankments on the bacterial and archaeal communities of native Suaeda salsa, Phragmites australis, and invasive Spartina alterniflora saltmarshes on the east coast of China.Results: Embankments were found to significantly decrease the microbial diversity of the S. alterniflora salt marsh, while they increased the OTU richness of the P. australis salt marsh. Embankments modified the compositions of soil bacterial and archaeal communities in both the S. alterniflora and P. australis salt marshes. However, variations in the microbial diversity, richness, and community compositions between the native and embanked S. salsa salt marshes were insignificant. Conclusions: These results were possibly because the embankment significantly altered soil nutrient substrate levels (e.g., soil organic C and N) by variations in plant residues and physiochemical soil properties in S. alterniflora and P. australis saltmarshes, whereas the embankment had no observable changes in the soil nutrient substrate and the plant residue in S. salsa saltmarsh. This study also elucidated the effects of coastal embankments on biogeochemical cycles, and highlighted their potential hazards to ecosystems.


Author(s):  
Alice F. Besterman ◽  
Rachel W. Jakuba ◽  
Wenley Ferguson ◽  
Diana Brennan ◽  
Joseph E. Costa ◽  
...  

AbstractA prominent form of salt marsh loss is interior conversion to open water, driven by sea level rise in interaction with human activity and other stressors. Persistent inundation drowns vegetation and contributes to open water conversion in salt marsh interiors. Runnels are shallow channels originally developed in Australia to control mosquitoes by draining standing water, but recently used to restore marsh vegetation in the USA. Documentation on runnel efficacy is not widely available; yet over the past 10 years dozens of coastal adaptation projects in the northeastern USA have incorporated runnels. To better understand the efficacy of runnels used for restoration, we organized a workshop of 70 experts and stakeholders in coastal resource management. Through the workshop we developed a collective understanding of how runnels might be used to slow or reverse open water conversion, and identified unresolved questions. In this paper we present a synthesis of workshop discussions and results from a promising case study in which vegetation was restored at a degraded marsh within a few years of runnel construction. Despite case study outcomes, key questions remain on long-term runnel efficacy in marshes differing in elevation, tidal range, and management history. Runnel construction is unlikely to improve long-term marsh resilience alone, as it cannot address underlying causes of open water conversion. As a part of holistic climate planning that includes other management interventions, runnels may “buy time” for salt marshes to respond to management action, or adapt to sea level rise.


Quaternary ◽  
2022 ◽  
Vol 5 (1) ◽  
pp. 2
Author(s):  
Jessica Chamberlin ◽  
Camryn Soehnlein ◽  
Jason Evans ◽  
Benjamin Tanner

Salt marshes and mangroves are currently being affected by rising temperatures. Mangroves thrive below −29° N latitude in Florida, USA, and have a low tolerance for extreme cold events, whereas salt marshes dominate further north. One potential effect of climate change is a reduction in the frequency of extreme cold events, which may lead to mangrove expansion into salt marsh systems. Our research identified sediment proxy indicators of salt marsh and mangrove environments. These indicators were applied to soil cores from intertidal wetlands near the current northern limit of mangrove presence on the east coast of Florida, to determine if mangrove expansion into salt marsh environments has precedence in the deeper past. Our findings suggest that mangrove and salt marsh sediments can be distinguished using a combination of stable carbon isotope ratios of sedimentary organic matter and macroscopic plant fragments, and our results showed that a mangrove stand that we cored established only recently. This result is consistent with other work in the southeastern United States that suggests that mangroves established at the current boreal limit only recently after the end of the Little Ice Age, and that the current mangrove expansion may be fueled by anthropogenic climate change.


Sign in / Sign up

Export Citation Format

Share Document