marsh surface
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 11)

H-INDEX

15
(FIVE YEARS 0)

Author(s):  
Laura C. Reynolds ◽  
Alexander R. Simms ◽  
Thomas K. Rockwell ◽  
Yusuke Yokoyama ◽  
Yosuke Miyairi ◽  
...  

Stratigraphic evidence for coseismic subsidence has been documented in active-margin estuaries throughout the world. Most of these studies have been conducted in subduction zone or strike-slip settings; however, the stratigraphic response to coseismic subsidence in other tectonic settings would benefit from further study. Here we show evidence of late Holocene coseismic subsidence in a structural estuary in southern California. Below the modern marsh surface, an organic-rich mud containing marsh gastropods, foraminifera, and geochemical signatures indicative of terrestrial influence (mud facies) is sharply overlain by a blue-gray sand containing intertidal and subtidal bivalves and geochemical signatures of marine influence (gray sand facies). We use well-established criteria to interpret this contact as representing an abrupt 1.3 ± 1.1 m rise in relative sea level (RSL) generated by coseismic subsidence with some contribution from sediment compaction and/or erosion. The contact dates to 1.0 ± 0.3 ka and is the only event indicative of rapid RSL rise in the 7 k.y. sedimentary record studied. Consistent with observations made in previous coseismic subsidence studies, an acceleration in tidal-flat sedimentation followed this abrupt increase in accommodation; however, the recovery of the estuary to its pre-subsidence elevations was spatially variable and required 500−900 years, which is longer than the recovery time estimated for estuaries with larger tidal ranges and wetter climates.


Shore & Beach ◽  
2021 ◽  
pp. 73-82
Author(s):  
Rusty Feagin ◽  
Thomas Huff ◽  
Kevin Yeager ◽  
Sam Whitehead

The Slop Bowl marsh in the Brazoria National Wildlife Refuge provides extraordinarily high quality, heavily used bird habitat. Much of this habitat has experienced hypersaline conditions due to both hydrologic alteration by humans and a rapidly and changing physical environment over the past several decades. Oil and natural gas extraction activities have resulted in excavation and channelization along pipelines and hydrologic obstruction by an access road. In addition, subsidence along growth faults has altered hydrologic pathways and lowered surface elevations in the center of the marsh. Our objective was to understand the underlying processes that contribute to hypersaline conditions and to evaluate possible restoration alternatives to reduce the severity of those conditions. Accordingly, we conducted extensive field and hydrologic modeling efforts, and identified the past, present, and future of this marsh habitat under a baseline scenario. We then compared various restoration action scenarios against this baseline. We found that, beginning in about 15 years, relative sea level rise will improve the hydrologic conditions by enhancing tidal flushing. However, if fill material is continually added to elevate the obstructing road as the sea rises, this hydrologic relief may never be realized. Moreover, we found that if a drought occurs during this critical period, a difference of only a few centimeters in the relative water level and road elevation, or changes in marsh surface elevations driven by fault motion and subsidence, may have catastrophic consequences. The modeling also suggests that several potential interventions can bridge this gap over the next 15 years and beyond. Actions that improve tidal circulation, reduce salinity, and enhance marsh accretion are being developed by the project team to enhance and restore habitat in the near term. The most optimal approaches evaluated thus far include the installation of culverts at critical locations, the excavation of a small channel, the modification of flow pathways, and the beneficial use of sediments and vegetative plantings. We conclude that, under specific circumstances or at unique locations such as the Slop Bowl marsh, sea level rise can be leveraged to improve coastal wetland health.


Shore & Beach ◽  
2021 ◽  
pp. 33-40
Author(s):  
Samuel Zapp ◽  
Giulio Mariotti

Dredged material can be used for marsh restoration by depositing it on the marsh surface (thin-layer placement), by releasing it at the mouth of channels and allowing tidal currents to transport it onto the marsh platform (channel seeding), or by creating new marshes over shallow areas of open water. We investigate the efficacy of these different methods using a comprehensive 2D marsh evolution model that simulates tidal dynamics, vegetation processes, bank and wave erosion, and ponding. Total marsh area is assessed over 50 years in an idealized microtidal marsh under different relative sea level rise (RSLR) scenarios. For a given volume of total sediment added, the frequency of deposition is relatively unimportant in maximizing total marsh area, but the spatial allocation of the dredged material is crucial. For a given volume of sediment, thin-layer deposition is most effective at preserving total marsh area, especially at high rates of RSLR. Channel seeding is less efficient, but it could still provide benefits if larger amounts of sediment are deposited every 1-2 years. Marsh creation is also beneficial, because it not only increases the marsh area, but additionally slows the erosion of the existing marsh. The 2D model is highly computationally efficient and thus suited to explore many scenarios when evaluating a restoration project. Coupling the model with a cost assessment of the different restoration techniques would provide a tool to optimize marsh restoration.


2021 ◽  
Author(s):  
Jeremy Lundholm ◽  
Tasha R.M. Rabinowitz ◽  
Lyndsay Greene ◽  
Alisha D. Glogowski ◽  
Tony Bowron ◽  
...  

Abstract Salt marshes are a type of coastal wetland that are affected by dynamic coastal processes. Ice blocks and wrack (mats of plant debris) regularly float onto northern marshes and become stranded, affecting vegetation and soil accretion. There is little research regarding the capacity of ice and wrack to transport viable plant propagules onto marshes where they can colonize, which may be particularly important at barren new salt marsh restoration sites. Contributions of sediment by ice may also be important at restoration sites to raise the marsh platform to elevations appropriate for plant colonization. We collected ice (n = 27) and wrack (n = 18) samples at marshes in the Bay of Fundy, ran germination trials with the contents, and measured the quantity of sediment in the ice. We found viable propagules from halophytic and non-halophytic species in wrack, and viable propagules of Sporobolus pumilus in ice. Additionally, we found sediment densities between 0.01 and 4.75 g·cm−3 in ice blocks that translated to 26.61 – 21,483.59 kg of total sediment per block, representing a large source of sediment. We found that the number of germinating propagules could not be predicted by wrack size, and that pH, sediment density, sediment weight in ice blocks were variable across the marsh surface, while ice salinity was negatively correlated with elevation and distance from creek. Our results indicate that ice and wrack represent a potential source for vegetation colonization at salt marsh sites and highlights their contributions to facilitating vegetation colonization through building marsh soils.


Author(s):  
Jacqueline Michel ◽  
Scott Zengel

ABSTRACT Spills that result in oiled marshes provide unique challenges for responders because intensive removal methods can cause additional harm and slow overall recovery of the habitat. These issues are of particular concern for spills that affect the marsh interior, where access is limited, often resulting in extensive damage from foot and vessel traffic. In Louisiana, extensive marshes are crossed by numerous pipelines and oil wells, and spills can result in heavy oiling of interior habitats in remote locations. Thus, in-situ burning (ISB) is often considered as the best response option. Monitoring of in-situ burns in marshes has provided the scientific basis for evaluating the conditions under which a burn can speed recovery. The lessons learned from multiple burns in Louisiana over the period 2000–2019 include: the burned area can be much greater than oiled area, so the potential for a larger burn should be explicitly considered and planned for; a water layer over the marsh soil is preferred but not required under all conditions; water-saturated soils are required; ISB can be used weeks post-spill to remove oil, but it will not prevent vegetation mortality from oil exposure prior to the burn; oil that penetrates into the substrates or is released below the marsh surface may persist after burning; select ISB as an option early, to prevent damage from foot traffic, etc.; vegetative recovery usually occurs within 1–2 growing seasons; burning can result in a change in dominant plant species; and ISB is very appropriate for small spills in the marsh interior where access for manual removal can cause extensive damage.


2021 ◽  
Vol 9 (3) ◽  
pp. 311
Author(s):  
Ben R. Evans ◽  
Iris Möller ◽  
Tom Spencer

Salt marshes are important coastal environments and provide multiple benefits to society. They are considered to be declining in extent globally, including on the UK east coast. The dynamics and characteristics of interior parts of salt marsh systems are spatially variable and can fundamentally affect biotic distributions and the way in which the landscape delivers ecosystem services. It is therefore important to understand, and be able to predict, how these landscape configurations may evolve over time and where the greatest dynamism will occur. This study estimates morphodynamic changes in salt marsh areas for a regional domain over a multi-decadal timescale. We demonstrate at a landscape scale that relationships exist between the topology and morphology of a salt marsh and changes in its condition over time. We present an inherently scalable satellite-derived measure of change in marsh platform integrity that allows the monitoring of changes in marsh condition. We then demonstrate that easily derived geospatial and morphometric parameters can be used to determine the probability of marsh degradation. We draw comparisons with previous work conducted on the east coast of the USA, finding differences in marsh responses according to their position within the wider coastal system between the two regions, but relatively consistent in relation to the within-marsh situation. We describe the sub-pixel-scale marsh morphometry using a morphological segmentation algorithm applied to 25 cm-resolution maps of vegetated marsh surface. We also find strong relationships between morphometric indices and change in marsh platform integrity which allow for the inference of past dynamism but also suggest that current morphology may be predictive of future change. We thus provide insight into the factors governing marsh degradation that will assist the anticipation of adverse changes to the attributes and functions of these critical coastal environments and inform ongoing ecogeomorphic modelling developments.


2021 ◽  
Author(s):  
Riccardo Xotta ◽  
Claudia Zoccarato ◽  
Philip S. J. Minderhoud ◽  
Pietro Teatini

<p>Tidal marshes are vulnerable and dynamic ecosystems with essential roles from protection against marine storms to biodiversity preservation. However, the survival of these environments is threatened by external stressors such as increasing mean sea level, reduction in sediment supply, and erosion. Tidal marshes are formed by deposition over the last centuries to millennia of sediments transported by surface water and biodegradation of organic matter derived from halophytic vegetation. Therefore, the sediment at the surface is characterized by high porosity and their large consolidation potential plays an important role in the future elevation dynamics, which is often not fully recognized.</p><p>Here we propose a novel three-dimensional numerical model to simulate the long-term dynamics of tidal marshes. A 3D groundwater flow equation in saturated conditions is implemented to compute the over-pressure dissipation with the aid of the finite element (FE) method, whereas the sediment consolidation is computed according to Terzaghi's theory.</p><p>A Lagrangian approach is implemented in the FE numerical model to properly consider the large soil deformation arising from the deposition of highly compressible material. The hydro-geomechanical properties, that depend on the intergranular effective stress, are highly non-linear.</p><p>The model takes advantage of a dynamic mesh that simulates the evolution of the landform elevation by means of an accretion/compaction mechanism: the elements deform in time as the soil consolidates and increase in number as the new sediments deposit over the marsh surface. The deposition is treated as input to the consolidation model and can vary in space and time.</p><p>The model is applied to simulate the long-term evolution of realistic tidal marshes in terms of accretion and consolidation due to the coupled dynamics of surficial and subsurface processes.</p>


2021 ◽  
Author(s):  
Alice Staro ◽  
Duncan FitzGerald ◽  
Zoe Hughes ◽  
Christopher Hein ◽  
Ioannis Georgiou ◽  
...  

<p>Coastal saltmarshes are an important and highly diverse ecosystem, shielding the mainland from erosion and flooding. Along the US East Coast these valuable wetlands are endangered due to climate change, sea-level rise, and reduced fluvial sediment fluxes. Although hurricanes are commonly an erosional agent, they may be responsible for delivering significant volumes of sediment to the marsh surface, which could aid resiliency by increasing vertical accretion. This study analyzes marsh sediment cores collected during December 2017 within the Georgia Bight, targeting deposits associated with Hurricane Irma, which caused significant wave energy and storm surge along the coast from Florida to South Carolina in September 2017.</p><p>We have focused our initial research on samples from Sapelo Island (Georgia), where Hurricane Irma produced maximum wind velocities of 17.5 m/s and a 1.3 m storm surge, inundating the marsh for 14.8 hrs. We find that Irma-related layers are between 2 and 7 cm thick and well-oxidized. These deposits typically consist of laminated mud with low organic content (LOI: 10-25%) and low bulk density (0.3-0.8 g/cm<sup>3</sup>). On average, Irma event sediment thickness is 4 times the historical average annual accretion, which in Georgia salt marshes is 1.55 mm.</p><p>A direct comparison of Irma-affiliated marsh accretion and historical rates is complicated due to differences in consolidation, rooting and vegetation, and the sedimentation history of the marsh. Nonetheless, the storm layer represents a significant addition of sediment to the marsh surface. Thus, future increases in event sedimentation, associated with increased frequency or severity of storms, could help compensate for sea-level rise and lessen the likelihood or extent of marsh loss due to submergence.</p>


2020 ◽  
Vol 13 (1) ◽  
pp. 49
Author(s):  
R. Eugene Turner ◽  
Yu Mo

Levee construction aboveground and hydrocarbon removal from belowground in coastal wetlands can create hydrologic changes that increase plant stress through flooding. But the significance of the subsidence they cause individually or in combination is contested. This study untangled them to demonstrate elevational limits of salt marshes by studying dredged and natural waterways in two salt marshes in Louisiana, USA. The areas had a homogenous plant cover before drilling for oil and gas extraction peaked in the 1960s, and now are a mixed network of natural waterways and dredged canals used to drill wells with an average drill date of 1965.8 ± 2.7 (µ ± 1 SEM; n = 18) and well depth of 4661.0 m ± 56.6 (µ ± 1 SEM; n = 18). Aerial imagery was used to document how canals widened to become 2 to 4 times larger than their original construction width at the high production site and 50% larger at the low production site, whereas increases at the nearby natural channels were much less. Light detection and ranging (LIDAR) measurements at the high production site from 2002 showed that the marsh surface near wells subsided by 34 cm compared to undredged sites. Elevation in marshes at producing and dry wells were equal at the low production site, but high production well locations were even lower than at dry wells. An elevation vs. percent open water curve developed from these data overlapped with an independent analysis of a brackish marsh. A relative subsidence rate between 7.4 to 10.4 mm y−1 transformed these salt marshes to an open water habitat within a few decades. The local creation of accommodation space through hydrocarbon removal and leveed wetlands is a parsimonious explanation for the spatial and temporal land loss rates on this deltaic coast over the last 80 years of oil and gas exploration. Substantial losses from the accelerating rates of sea level rise are indicated to occur before 2050.


Sign in / Sign up

Export Citation Format

Share Document