scholarly journals Ostrowski type inequalities and some selected quadrature formulae

Author(s):  
Gradimir Milovanovic

Some selected Ostrowski type inequalities and a connection with numerical integration are studied in this survey paper, which is dedicated to the memory of Professor D. S. Mitrinovic, who left us 25 years ago. His significant inuence to the development of the theory of inequalities is briefly given in the first section of this paper. Beside some basic facts on quadrature formulas and an approach for estimating the error term using Ostrowski type inequalities and Peano kernel techniques, we give several examples of selected quadrature formulas and the corresponding inequalities, including the basic Ostrowski's inequality (1938), inequality of Milovanovic and Pecaric (1976) and its modifications, inequality of Dragomir, Cerone and Roumeliotis (2000), symmetric inequality of Guessab and Schmeisser (2002) and asymmetric in-equality of Franjic (2009), as well as four point symmetric inequalites by Alomari (2012) and a variant with double internal nodes given by Liu and Park (2017).

Filomat ◽  
2013 ◽  
Vol 27 (4) ◽  
pp. 649-658 ◽  
Author(s):  
Mohammad Masjed-Jamei ◽  
Gradimir Milovanovic ◽  
M.A. Jafari

In this short note, we derive closed expressions for Cotes numbers in the weighted Newton-Cotes quadrature formulae with equidistant nodes in terms of moments and Stirling numbers of the first kind. Three types of equidistant nodes are considered. The corresponding program codes in Mathematica Package are presented. Finally, in order to illustrate the application of the obtained quadrature formulas a few numerical examples are included.


1987 ◽  
Vol 27 (1) ◽  
pp. 85-97 ◽  
Author(s):  
Ulf Torsten Ehrenmark

1970 ◽  
Vol 77 (10) ◽  
pp. 1065-1072 ◽  
Author(s):  
D. R. Hayes ◽  
L. Rubin

2021 ◽  
Vol 49 (1) ◽  
Author(s):  
Gradimir V. Milovanovic ◽  
◽  
Nevena Vasovic ◽  

Orthogonal polynomials and the corresponding quadrature formulas of Gaussian type concerni λ ng > the 1 e / v 2 en wei x gh > t f 0 unction ω(t; x) = exp λ (−= xt 1 2) / ( 2 1 − t2)−1/2 on (−1, 1), with parameters − and , are considered. For these quadrature rules reduce to the socalled Gauss-Rys quadrature formulas, which were investigated earlier by several authors, e.g., Dupuis at al 1976 and 1983; Sagar 1992; Schwenke 2014; Shizgal 2015; King 2016; Milovanovic ´ 2018, etc. In this generalized case, the method of modified moments is used, as well as a transformation of quadratures on (−1, 1) with N nodes to ones on (0, 1) with only (N + 1)/2 nodes. Such an approach provides a stable and very efficient numerical construction.


Sign in / Sign up

Export Citation Format

Share Document